Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 329-331    
  金属与金属基复合材料 |
氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响
张长亮, 卢一平
大连理工大学材料科学与工程学院,辽宁省凝固控制与数字化制备技术重点实验室,大连 116024
Effect of Nitrogen Element on Microstructure and Mechanical Properties of Ti2ZrHfV0.5Mo0.2 High-entropy Alloy
ZHANG Changliang, LU Yiping
Provincial Key Laboratory of Solidification Control and Digital Preparation Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
下载:  全 文 ( PDF ) ( 2178KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮元素在传统合金中经常被用作微量添加元素来提升合金的性能。本工作研究了不同含量的氮对BCC结构的Ti2ZrHfV0.5Mo0.2高熵合金的组织结构和力学性能的影响。研究发现,高熵合金中加入微量的氮后,氮完全固溶在高熵合金中,高熵合金依然是单相固溶体结构。而随着氮含量的增加,其固溶度饱和,有氮化物相析出;同时压缩力学性能测试表明,随着氮的添加,高熵合金的硬度和压缩屈服强度都明显提高,但是塑性会降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张长亮
卢一平
关键词:  氮元素  高熵合金  组织结构  力学性能    
Abstract: Nitrogen is often used as a trace additive in conventional alloys to enhance the properties of the alloy. In this work, the effects of different contents of nitrogen on the microstructure and mechanical properties of Ti2ZrHfV0.5Mo0.2 high-entropy alloy (HEA) were investigated. It is found that the nitrogen element is completely dissolved in the HEA with a single-phase solid solution structure after adding a small amount of nitrogen. With the increase of nitrogen content, the nitride phase is formed from the solid solution supersaturation. At the same time, the compression mechanical properties test shows that the hardness and compressive yield strength of the HEA obviously improve with the addition of nitrogen element, but the plasticity decreases.
Key words:  nitrogen element    high entropy alloy    microstructure    mechanical properties
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TG139  
基金资助: 国家自然科学基金(51671044;51822402)
作者简介:  张长亮,大连理工大学硕士研究生,主要研究方向为高熵合金,研究探索氮元素等微量元素对高熵合金组织、性能的影响。卢一平,大连理工大学教授、博士研究生导师。主持国家自然科学基金面上项目2项,青年基金项目1项,中国博士后科学基金一等资助和特别资助各1项,参与国家自然科学基金联合基金重点项目等。发表SCI论文71篇,其中第一作者及通信作者47篇,包括Acta Materialia, Nanoscale, Scientific Report, Applied Physics Letters, Journal of Applied Phy-sics等国际知名期刊,上述成果被52家研究机构SCI他引471次,第一作者Acta Materlia高被引论文一篇,授权发明专利6项。获2015年度教育部技术发明一等奖、2015年度国家技术发明二等奖。获第44届日内瓦国际发明展金奖,中国国际工业博览会奖(特等级)。国际会议邀请报告4次,国内邀请报告6次,分会主席1次。兼任中国材料研究学会凝固科学与技术分会理事及副秘书长、中国材料研究学会青年工作委员会理事等。luyiping@dlut.edu.cn
引用本文:    
张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
ZHANG Changliang, LU Yiping. Effect of Nitrogen Element on Microstructure and Mechanical Properties of Ti2ZrHfV0.5Mo0.2 High-entropy Alloy. Materials Reports, 2019, 33(z1): 329-331.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/329
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials,2004,6(5),299.
2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring: A,2004,375,213.
3 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science,2014,61,1.
4 吕昭平, 雷智锋, 黄海龙, 等.金属学报,2018,54(11),1553.
5 Poletti M G, Battezzati L. Acta Materialia,2014,75,297.
6 Jien-Wei Yeh. Annales de Chimie-Science des Materiaux,2006,31(6),633.
7 Li Z, Pradeep K G, Deng Y, et al. Nature,2016,534(7606),227.
8 Gludovatz B, Hohenwarter A, Catoor D, et al. Science,2014,345(6201),1153.
9 Liu W H, Lu Z P, He J Y, et al. Acta Materialia,2016,116,332.
10 Gao M C, Yeh J W, Liaw P K, et al. High-entropy alloys, Cham: Springer International Publishing, China,2016.
11 Li J, Yang X, Zhu R, et al. Metals,2014,4(4),597.
12 Zhang L, Thomas B G. ISIJ International,2003,43(3),271.
13 孔礼明.上海金属,2005,27(2),44.
14 石锋, 崔文芳, 王立军, 等.上海金属,2006,28(5),45.
15 Lei Z, Liu X, Wu Y, et al. Nature,2018,563(7732),546.
16 Feng H, Li H, Wu X, et al. Journal of Materials Science & Technology,2018,34(10),1781.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[3] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed