Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 332-336    
  金属与金属基复合材料 |
硫对镍基合金825(100)电子结构影响的密度泛函研究
范舟1, 黄泰愚1, 刘建仪2
1 西南石油大学材料科学与工程学院,成都 610500
2 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
Effect of Sulfur on Structural and Electronic Properties of Ni-based 825(100) Alloy — a DFT Study
FAN Zhou1, HUANG Taiyu1, LIU Jianyi2
1 School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500
2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500
下载:  全 文 ( PDF ) ( 3405KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于硫在镍基合金表面易产生点蚀,基于密度泛函理论,利用软件对镍基合金825表面吸附元素硫进行了计算,研究了硫对合金表面电子结构及耐蚀性的影响。研究表明,S在合金825面心立方晶胞(100)Ni/Fe终止面上的H位吸附能达到-6.51 eV,相互作用较强且稳定吸附;S在合金(100)面的吸附主要是由S-3p轨道与Fe-3d轨道以及第二层Cr-3d轨道杂化引起;综合分析电子态密度、电荷布居、差分电荷密度,硫在合金(100)面吸附后电子态呈扩散趋势,活性增加,带负电,Ni-S间的弱耦合作用阻碍了Fe-S成键,Ni的存在提高了合金的耐蚀性;当S覆盖度从0.25ML升高到1.0ML时,在0.5ML附近S与合金的相互作用达到极大,在1.0ML附近时相邻S原子间的耦合和杂化阻碍了S在(100)面上的吸附。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范舟
黄泰愚
刘建仪
关键词:  镍基合金    吸附  电子结构  DFT    
Abstract: The local accumulation of sulfur adsorbed on the pipeline will make local corrosion occur, in order to reveal the corrosion mechanism, DFT was used to calculate and analyze the atomic S adsorption on Ni-based 825 alloy(100) surface. The results show that the most favourable adsorption site for atomic S on the 825 alloy(100) surface is the H position on the Ni/Fe-terminated surface. When the coverage of S increases to a certain extent, the S-S bond coupling and hybridization hinder the adsorption of atomic S on the 825 alloy(100) surface. From the PDOS and the charge density difference, it’s obvious that the interaction of the atomic S and the 825 alloy(100) surface is mainly contributed to the S-3p, the Cr-3d and the Fe-3d state. Altuough orbital coupling and hybridization between Ni and S is not strong, Ni is the important factor to inhibit the S adsorption on the 825 alloy. When the S coverage increased from 0.25 ML to 1.0 ML, the interaction of S with the alloy in the vicinity of 0.5 ML reached a maximum, and the coupling and hybridization between the adjacent S atoms in the vicinity of 1.0 ML hindered the adsorption of S on the (100) surface.
Key words:  Ni-based 825 alloy    sulfur    adsorption    the electronic structure    DFT
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TG146  
作者简介:  范舟,西南石油大学副教授,2003年进入西南石油大学材料科学与工程学院任教,主要从事金属材料、特殊气藏开发用材料研究以及焊接加工方面的教学与科研。四川省机械工程学会无损检测专委会常务理事、国际焊接工程师。主持或主研纵向项目8项,其中国家级4项,承担横向合作项目14项。fanzhou505@163.com
引用本文:    
范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
FAN Zhou, HUANG Taiyu, LIU Jianyi. Effect of Sulfur on Structural and Electronic Properties of Ni-based 825(100) Alloy — a DFT Study. Materials Reports, 2019, 33(z1): 332-336.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/332
1 Opportunistically M, Borodin M, Wang Z. Science,2006,37(36),1508.
2 熊有全. 当代石油石化,2006,14(8),11.
3 Hernandez J M, Lim D H, Nguyen H V P, et al. International Journal of Hydrogen Energy,2014,39(23),12251.
4 Jin P, Robbins W K, Bota G. Energy & Fuels,2017,31(9),10222.
5 Alfonso D R. Surface Science,2008,602(16),2758.
6 刘智勇, 董超芳, 李晓刚,等. 北京科技大学学报,2009,31(3),318.
7 李明, 李晓刚, 陈钢,等. 北京科技大学学报,2007,29(1),39.
8 Rosalyn F, Intelsat S, Borne G, et al. Material Corrosion, DOI: 10.1002/maco.201609188.
9 Chou C, Henge S, Chen C, et al. Corrosion Science,2013,67(1),184.
10 Narky P B V, Panderer J W, Chen C W. Journal of Electron Spectroscopy,1982,27(3),233.
11 刘华忠, 夏庆, 张爱华, 等. 材料导报:研究篇,2015,29(3),149.
12 张杨, 黄燕, 陈效双, 等. 物理学报,2013,62(20),206102.
13 Pan Y , Guan W . International Journal of Hydrogen Energy,2016,41(26),11033.
14 栾扬, 赵志曼, 全思臣, 等. 材料导报:研究篇,2018,32(6),2118.
15 戈磊, 陈长风, 郑树启, 等. 腐蚀与防护,2009(10),708.
16 蔡晓文, 戈磊, 于浩波, 等. 材料科学与工程学报,2010,28(2),226.
17 Yunhai Bai, Demetrios Kirvassilis, Lang Xu, et al. Surface Science,2019,67(9),240.
18 Hernandez J M, Lim D H, Nguyen H V P, et al. International Journal of Hydrogen Energy,2014,39(23),12251.
19 Gallegos M D, et al. Journal of Physics:Condensed Matter,2002,14(11),2717.
20 Carlo M, Councilman V, et al. Physical Review B,2000,62(4),2899.
21 David Vanderbilt. Physical Review:B Condensed Matter,1990,4111,7892.
22 Guo J, Geng Z, Dong J, et al. Rare Metal Materials & Engineering,2012,41(11),1929.
23 Wen P, Li C F, Chaos Y, et al. Acta Physic Silica,2014,6319,809.
24 黄俊, 李荣兴, 谢刚, 等. 材料导报:研究篇,2018,32(10),39.
25 罗强, 张智, 唐斌,等. 原子与分子物理学报,2012,29(4),364.
26 ołtys J, Piechota J, Strak P, et al. Applied Surface Science,2017,393(2),168.
[1] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[2] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[3] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[4] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[5] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[6] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[7] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[8] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[9] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[10] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[11] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[12] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[13] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[14] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[15] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed