Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 112-115    
  无机非金属及其复合材料 |
磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长
赵笑昆1,2, 李博研1,2, 张增光1,2
1 神华(北京)光伏科技研发有限公司,北京 102211
2 北京市纳米结构薄膜太阳能电池工程技术研究中心,北京 102211
Rod-like Grain Growth in Al-doped ZnO Thin Films Deposited by RF Magnetron Sputtering
ZHAO Xiaokun1,2, LI Boyan1,2, ZHANG Zengguang1,2
1 NICE Solar Energy Ltd, Beijing 102211
2 Beijing Engineering Research Center of Nano-structured Thin Film Solar Cell, Beijing 102211
下载:  全 文 ( PDF ) ( 3348KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Al掺杂ZnO (AZO)薄膜由于电导率高、光学透过率高、原料储量丰富、成本低廉而成为最具潜力的透明导电薄膜。本实验采用射频磁控溅射法沉积制备了30 cm×30 cm 的AZO薄膜,研究了溅射压强对晶体结构、微观结构、电学和光学性能的影响,实现微观结构和性能的调节。结果表明,溅射压强增大,薄膜沉积速率降低,晶体c轴择优取向生长变弱,晶粒尺寸变大且存在长度大于100 nm的棒状晶粒。0.933 Pa时薄膜电阻率降至最低(1.01×10-3 Ω·cm),可见光透过率为79.7%,禁带宽度Eg=3.82 eV,有利于透明导电膜的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵笑昆
李博研
张增光
关键词:  Al掺杂ZnO  射频磁控溅射  压强  晶粒生长    
Abstract: Al-doped ZnO (AZO) has been considered to be one of the most potential transparent conductive oxide (TCO) films due to its high conductivity, light transmittance, abundant and low cost feature. The 30 cm×30 cm AZO films were deposited by RF magnetron sputtering in this work. The influence of working pressure on the phase structure, microstructure, electrical properties as well as optical properties of AZO films were studied, and the modification of the microstructure and properties were achieved. The film deposition rate was lowered by increasing the working pressure. The c-axis orientation preferred grain growth was weakened by increasing the working pressure. The grain size grown up by increasing the working pressure and rod-like grain growth appeared with a length of >100 nm. The minimum resistivity of 1.01×10-3 Ω·cm was achieved at 0.933 Pa, the corresponding average transmittance and Eg were 79.7% and 3.82 eV. The AZO films in this work were beneficial to the TCO application.
Key words:  Al-doped ZnO    RF magnetron sputtering    working pressure    grain growth
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TB34  
基金资助: 国家重点研发计划项目(2018YFB1500200);北京市科技计划项目(Z181100005118003)
作者简介:  赵笑昆,博士,工程师,国家能源投资集团下属神华(北京)光伏科技研发有限公司。2009年6月毕业于中国地质大学(北京)材料科学与工程专业,获得学士学位。2014年6月毕业于北京科技大学材料科学与工程专业,获得工学博士学位。目前主要研究领域为功能材料、新能源材料。李博研,博士,神华(北京)光伏科技研发有限公司,研发部经理。2012年毕业于南开大学,微电子学与固体电子学专业,获得工学博士学位。目前主要研究领域为薄膜光伏技术,liboyan@nicenergy.com。张增光,博士,工程师,神华(北京)光伏科技研发有限公司。2011年1月毕业于中国科学院研究生院,物理化学专业,获得理学博士学位。现从事铜铟镓硒薄膜太阳能电池研发与应用相关工作。
引用本文:    
赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
ZHAO Xiaokun, LI Boyan, ZHANG Zengguang. Rod-like Grain Growth in Al-doped ZnO Thin Films Deposited by RF Magnetron Sputtering. Materials Reports, 2019, 33(z1): 112-115.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/112
1 Ellmer K. Nature Photonics, 2012, 6, 809.
2 叶志镇, 吕建国, 张银珠, 等. 氧化锌半导体材料掺杂技术与应用, 浙江大学出版社,2009.
3 Liu J, Zhang W J, Song D Y, et al. Ceramics International,2014,40(8),12905.
4 Sun Y H, Wang H L, Chen J, et al. Transactions of Nonferrous Metals Society of China,2016,26(6),1655.
5 Berasategui E G, Zubizarreta C, Bayón R, et al. Surface and Coatings Technology,2015,271,141.
6 He B, Xu J, Xing H Z, et al. Superlattices and Microstructures,2013,64,319.
7 Kim H R, Kim J B, Choi Y S, et al. Surface and Coatings Technology,2014,259,39.
8 Zubizarretaa C, Berasateguia E G, Ciarsoloa I, et al. Applied Surface Scie-nce,2016,380,218.
9 Ghorannevis Z, Akbarnejad E, Salarelahi A, et al. Journal of Crystal Growth,2016,447,62.
10 Prepelita P, Craciun V, Garoi F. Applied Surface Science,2015,352,23.
11 Miao D G, Zhao H M, Li A S, et al. Ceramics International,2015,41(6),8235.
12 Thornton J A. Journal of Vacuum Science & Technology,1974,11(4),666.
13 Kluth O, Schü pe G, Hüpkes J, et al. Thin Solid Films,2003,442 (1-2),80.
14 Chen J, Sun Y H, Lv X, et al. Applied Surface Scienc,2014,317,1000.
15 Wang F, Wu M Z, Wang Y Y, et al. Vacuum,2013,89,127.
[1] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[4] 孙科学, 常月欣, 成谢锋. xBiInO3-(1-x)PbTiO3薄膜的横向压电特性[J]. 材料导报, 2019, 33(14): 2299-2304.
[5] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[6] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[7] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[8] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[9] 姜玉丹,金祖权,陈永丰,范君峰. 高吸水树脂对混凝土水化及强度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 40-44.
[10] 方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
[11] 秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
[12] 漆小鹏, 李文, 罗远方, 杨辉. 新型钇-羟基磷灰石骨水泥的制备及性能研究*[J]. CLDB, 2017, 31(13): 151-155.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed