Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 1-7    
  无机非金属及其复合材料 |
不同形貌的g-C3N4的制备研究进展
郭继鹏1, 王敬锋2,3, 林琳2, 何丹农1,2
1 上海交通大学材料科学与工程学院,上海 200240
2 纳米技术及应用国家工程中心,上海 200241
3 上海健康医学院纳米技术与健康研究院,上海 201318
Progress in Preparation of g-C3N4 with Different Morphologies
GUO Jipeng1, WANG Jingfeng2,3, LIN Lin2, HE Dannong1,2
1 School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2 National Engineering Research Center for Nanotechnology, Shanghai 200241
3 Shanghai University of Medicine & Health Sciences, Shanghai 201318
下载:  全 文 ( PDF ) ( 7002KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 半导体光催化剂在解决能源短缺和环境污染问题等方面有着重要的应用前景。近年来,聚合物半导体g-C3N4由于其独特的电子结构、高的热稳定性和化学稳定性、不含金属组分、廉价、易合成等优点,受到了人们的广泛关注。然而,g-C3N4也存在缺点,如比表面积很小、带隙较宽、光生电子空穴对易复合等,这此缺点严重限制了它的实际应用。研究表明,不同结构和形貌会对g-C3N4产生重要影响,显著提高光催化性能。本文综述了各种不同形貌g-C3N4的制备方法,详细介绍了g-C3N4球、g-C3N4纳米片、g-C3N4纳米管和纳米棒的制备,并讨论了这些材料的光催化性能。最后,本文对g-C3N4材料的应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭继鹏
王敬锋
林琳
何丹农
关键词:  g-C3N4  光催化  形貌  纳米球  纳米片  纳米管  纳米棒    
Abstract: Semiconductor photocatalysts have important application prospects in solving energy shortages and environmental pollution problems. In recent years, a polymer semiconductor g-C3N4 has received extensive attention due to its unique electronic structure, high thermal stability, metal-free composition, and low cost. However, g-C3N4 also has its own shortcomings, such as small specific surface area, wide band gap, photo-generated electron-hole pairs, and so on, which severely limits its practical application. Morphology regulation has an important influence on the electronic structure of g-C3N4, leading to the improvement of the photocatalytic activity. In this paper, the preparation methods of g-C3N4 with different morphologies, including g-C3N4 spheres, nanosheets, nanotubes and nanorods are reviewed. The effect of preparation method on the various morphologies and photocatalytic activities of the carbon nitride is also discussed. Finally, the future application of g-C3N4 materials is indicated.
Key words:  g-C3N4    photocatalysis    morphology    nanosphere    nanosheet    nanotube    nanorod
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TQ426  
基金资助: 上海市自然科学基金(17ZR1420000);上海市人才发展基金资助计划(2017077);上海市国际科技合作项目(18520723300);上海市闵行区民生项目(2018MH267)
作者简介:  郭继鹏,2016年毕业于武汉理工大学,获得工学学士学位。现为上海交通大学材料科学与工程学院研究生,在何丹农教授的指导下进行研究。目前主要研究方向为聚合物半导体在光催化析氢领域的应用。王敬锋,博士,毕业于上海交通大学,现为纳米技术及应用国家工程研究中心研究员,上海市人才发展基金资助获得者。目前主要从事纳米功能材料的开发与制备工作,在多孔材料、无机半导体的制备与应用研究等方面具有一定的研究经验。jingfeng1101@126.com
引用本文:    
郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
GUO Jipeng, WANG Jingfeng, LIN Lin, HE Dannong. Progress in Preparation of g-C3N4 with Different Morphologies. Materials Reports, 2019, 33(z1): 1-7.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/1
1 Fujishima A, Honda K. Nature,1972,238(5358),37.
2 Ong C B, Ng L Y, Mohammad A W. Renewable and Sustainable Energy Reviews,2018,81,536.
3 Meng A Y, Zhu B C, Zhong B, et al. Applied Surface Science,2017,422,518.
4 Nurlaela E, Ould-Chikh S, Llorens I, et al.Chemistry of Materials,2015,27(16),5685.
5 Zhang L, Yu W, Han C, et al. Journal of the Electrochemical Society,2017,164(9),H651.
6 Zheng Y, Pan Z M, Wang X C. Chinese Journal of Catalysis,2013,34(3),524.
7 Wang X, Maeda K, Thomas A, et al. Nature Materials,2009,8(1),76.
8 Wen J Q, Xie J, Chen X B, et al. Applied Surface Science,2017,391(SI),72.
9 Masih D, Ma Y, Rohani S. Applied Catalysis B: Environmental,2017,206,556.
10 Wang X C, Siegfried B, Markus A. ACS Catalysis, 2012,2(8),1596.
11 Zhao Z L, Wang X L, Shu Z, et al. Applied Surface Science,2018,455,591.
12 Liu C Y, Huang H W, Ye L Q, et al. Nano Energy,2017,41,738.
13 Zhou C, Shi R, Shang L, et al. Nano Research,2018,11(6),3462.
14 Wang Y Y, Zhao S, Zhang Y W, et al. Applied Surface Science,2018,440,258.
15 Wang J C, Cui C X, Li Y, et al. Journal of Hazardous Materials,2017,339,43.
16 Fang H B, Zhang X H, Wu J J, et al. Applied Catalysis B: Environmental,2018,225,397.
17 Yu W L, Chen J X, Shang T T, et al. Applied Catalysis B: Environmental,2017,219,693.
18 Di J, Xia J X, Yin S, et al. Journal of Materials Chemistry A,2014,2(15),5340.
19 Han M M, Wang H B, Zhao S Q, et al. Inorganic Chemistry Frontiers,2017,4(10),1691.
20 Groenewwol M, Antonietti M. Advanced Materials,2005,17(14),1789
21 Zhang S B, Li M, Qiu W J, et al.Chemistry Select,2017,2(32),10580.
22 Thomas A, Goettmann F, Antonietti M. Journal of the American Chemical Society,2007,20(3),738
23 Zhang J S, Zhang M W, Yang C, et al. Advanced Materials,2014,26(24),4121.
24 Sun J H, Zhang J S, Zhang M W, et al. Nature Communications,2012,1139.
25 Tong Z W, Yang D, Li Z, et al. ACS Nano,2017,11(1),1103.
26 Ong W J, Tan L L, Ng Y H, et al.Chemical Reviews,2016,116(12),7159.
27 Zhang J S, Guo F S, Wang X C. Advanced Function Materials,2013,23,3008.
28 Cui Y J, Tang Y B, Wang X C. Materials Letters,2015,161,197.
29 Hu C C, Chu Y C, Wang M S, et al.Journal of Photochemistry and Photobiology A: Chemistry,2017,348,8.
30 Jun Y S, Lee E Z, Wang X C, et al. Advanced Functional Materials,2013,23(29),3661.
31 Zhao S, Zhang Y W, Zhou Y M, et al.Carbon,2018,126,247.
32 Zhang J S, Chen Y, Wang X C. Energy & Environmental Science,2015,8(11),3092.
33 Takagaki A, Tagusagawa C, Hayashi S, et al. Energy Environmental Science,2010,3(1),82.
34 Tong H, Ouyang S X, Bi Y P, et al. Advanced Materials,2012,24(2),229.
35 Iwase A, Ng Y H, Ishiguro Y, et al. Journal of the American Chemical Society, 2011,133(29),11054.
36 Thomas A, Fischer A, Goettmann F, et al. Journal of Materials Chemistry,2008,18(41),4893.
37 Niu P, Zhang L L, Liu G, et al. Advanced Functional Materials,2012,22(22),4763.
38 Li Y F, Jin R X, Xing Y, et al. Advanced Functional Materials, 2016,6(24),1601273.
39 Golberg D, Bando Y, Huang Y, et al. ACS Nano,2010,4(6),2979.
40 Mombrú D F, Ricardo , Mombrú W. Applied Surface Science,2018,462,409.
41 Hu M, Mi B X. Environmental Science & Technology,2013,47(8),3715.
42 Hernandez Y, Nicolosi V, Lotya M, et al. Nature Nanotechnology,2008,3(9),563.
43 Yang S B, Gong Y J, Zhang J S, et al. Advanced Materials,2013,25(17),2452.
44 Tian J Q, Liu Q, Ge C J, et al. Nanoscale,2013,5(19),8921.
45 Lin Q Y, Li L,Liang S J, et al. Applied Catalysis B: Environmental,2015,163,135.
46 Ma T Y, Tang Y, Dai S, et al. Small,2014,10(12),2382.
47 Xu J, Zhang L W, Shi R, et al. Journal of Materials Chemistry A,2013,1(46),14766.
48 Han C C, Lu Y, Zhang J L, et al. Journal of Materials Chemistry A,2015,3(46),23274.
49 Zhu M S, Zhai C Y, Sun M J, et al. Applied Catalysis B: Environmental,2017,
50 Zhao H, Yu H, Quan X, et al. RSC Advances,2014,203,108.
51 Wang W B, Shu Z, Zhou J, et al. Applied Clay Science,2018,158,143.
52 Chen L, Wang X.Chemical Communications, 2017,53(88),11988.
53 Li X, Pan K, Qu Y, et al. Nano Research,2018,11(3),1322.
54 He F, Chen G, Miao J W, et al. ACS Energy Letters,2016,1(5),969.
55 Yan X, Gao Q, Qin J, et al. Materials Letters,2018,217,1.
56 Tian L, Li J Y, Liang F, et al. Applied Catalysis B: Environmental,2018,225,307.
57 Guo Y R, Liu Q, Li Z H, et al. Applied Catalysis B: Environmental,2018,221,362.
58 Tian L, Xian X Z, Cui X K, et al. Applied Surface Science,2018,430,301.
59 Wang J P, Li C Q, Cong J K, et al. Journal of Solid State Chemistry,2016,238,246.
60 Zeng Y X, Liu X, Liu C B, et al. Applied Catalysis B: Environmental,2018,224,1.
[1] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[2] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[3] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[4] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[7] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[8] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[9] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[10] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[11] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[12] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[13] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed