Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 70-72    
  无机非金属及其复合材料 |
基于超材料的多频段微带滤波器
赵亚娟1,2, 李宝毅1,2, 马晨1,2, 王东红1,2, 王富生3
1 中国电子科技集团公司第三十三研究所,太原 030006;
2 电磁防护材料及技术山西省重点实验室,太原 030006;
3 西北工业大学力学与土木建筑学院,西安 710072
Multiband Microstrip Filter Based on Metamaterial
ZHAO Yajuan1,2, LI Baoyi1,2, MA Chen1,2, WANG Donghong1,2, WANG Fusheng3
1 No.33 Research Institute of China Electronics Technology Group Corporation, Taiyuan 030006;
2 Electromagnetic Protection Materials and Technology Key Laboratory of Shanxi Province, Taiyuan 030006;
3 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 1912KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作设计了一种基于超材料的小型化多频段微带滤波器。基于超材料的相位补偿原理,通过将方块型超材料单元结构加载于接地板,实现微带滤波器的小型化设计,滤波器整体尺寸仅为25 mm×25 mm(0.38λ0×0.38λ00是低频段的导波波长)。通过对四开口型谐振环(Split ring resonator, SRR)微带线馈电,获得多频段滤波器设计。测试结果表明,滤波器的谐振点为2.4 GHz、3.4 GHz和5.5 GHz,工作频带内插入损耗最大值为0.85 dB,具有小型化、多频段、低损耗的特点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵亚娟
李宝毅
马晨
王东红
王富生
关键词:  超材料  小型化  多频段  滤波器    
Abstract: Acompact multiband microstrip filter based on metamaterial is designed in this work. The metamaterial filter has a compact size of 25 mm × 25 mm (0.38λ0×0.38λ0, λ0 is the guided wavelength of lower band) and miniaturization is realized by using the phase compensation principle of metamaterial. Multiband characteristic is obtained by using four-SRRs. The measured results show that the metamaterial filter works at 2.4 GHz, 3.4 GHz and 5.5 GHz, the insertion loss maximum is 0.85 dB in the band. Therefore, the metamaterial filter has the characteristics of miniaturization, multiband and low loss.
Key words:  metamaterial    miniaturization    multiband    filter
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TN927+.23  
基金资助: 国家自然科学基金(51875463);装备预研重点实验室基金(33KJ1707JJ039B)
通讯作者:  tyzyj917@163.com   
作者简介:  赵亚娟,1989年生,硕士,2014年6月毕业于山西大学物理电子工程学院,2014年7月至今工作于中国电子科技集团公司第三十三研究所,工程师。目前从事人工亚波长周期结构吸波屏蔽材料及射频器件的研究。
引用本文:    
赵亚娟, 李宝毅, 马晨, 王东红, 王富生. 基于超材料的多频段微带滤波器[J]. 材料导报, 2019, 33(Z2): 70-72.
ZHAO Yajuan, LI Baoyi, MA Chen, WANG Donghong, WANG Fusheng. Multiband Microstrip Filter Based on Metamaterial. Materials Reports, 2019, 33(Z2): 70-72.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/70
1 赵亚娟,王东红,张泽奎,等.光子学报,2017,46(6),0616005.
2 李玉龙,宋树祥,岑明灿,等.电子元件与材料,2016,1(35),57.
3 张友俊,林君.压电与声光,2015,6(37),1057.
4 赵亚娟,周必成,张晗,等.光子学报,2018,47(7),0723003.
5 Zhao Yajuan, Jiang Bo, Li Baoyi, et al. Optoelectronics Letters,2016,12(4),273.
6 Fu W, Han Y, Li J, et al. Journal of Physics D,2016,49(28),285110.
7 王昊深,韩奎,孙威,等.光学学报,2017,37(6),0623001.
8 刘海文,朱爽爽,文品,等.物理学报,2015,3(64),038101.
9 葛栋森,许全,魏明贵,等.红外与激光工程,2017,46(9),0921002.
10 Pantoli L, Stornelli V, Leuzzi G. Electronics Letters,2016,52(1),86.
11 Vaishali R, Seema A, Animesh B. Microwave and Optical Technology Letters,2015,5(57),1222.
12 Safari M, Shafai C, Shafai L. IEEE Transactions on Antennas and Propagation,2015,63(3),1014.
13 Guo J, Wu K, XiaoY C, et al. Journal of Optoelec tronics Laser,2014,25(7),1274.
14 Rudolph S M, Grbic A, et al. IEEE Transactions on Antennas and Propagation,2012,60(8),3661.
[1] 孙明娟, 刘光烜, 张淑媛, 李雪. 耐腐蚀吸波超材料的制备及应用[J]. 材料导报, 2019, 33(Z2): 613-616.
[2] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[3] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[4] 王晖, 屈绍波. 小型化频率选择表面研究现状及其应用进展[J]. 材料导报, 2019, 33(5): 881-893.
[5] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[6] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[7] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[8] 冯团辉, 李优. 基于单负超材料的高品质因数亚波长谐振腔[J]. 《材料导报》期刊社, 2018, 32(14): 2366-2369.
[9] 康园园,汤登飞,王川,董建峰. 超材料宽带圆偏振器的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1806-1812.
[10] 汤登飞,汪会波,王川,周霞,董建峰. 超材料对电磁波的极化转换及不对称传输研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 101-107.
[11] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮. “三明治”型超材料吸波体及其设计优化的研究现状*[J]. 《材料导报》期刊社, 2017, 31(3): 15-20.
[12] 宋健, 李敏华, 董建峰. 基于集总元件的超材料吸波器研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 114-122.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed