Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 604-608    
  高分子与聚合物基复合材料 |
聚合物基水滑石-石墨烯复合阻燃材料的研究进展
安文1,2, 马建中1,2, 徐群娜1,2
1 陕西科技大学轻工科学与工程学院,国家轻工化学实验工程示范中心,西安 710021;
2 陕西农产品加工技术研究所,西安 710021
Research Progress of Polymer-based Hydrotalcite-Graphene Flame RetardantComposites
AN Wen1,2, MA Jianzhong1,2, XU Qunna1,2
1 National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021;
2 Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021
下载:  全 文 ( PDF ) ( 2048KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,高分子材料已广泛应用于民用、工业和建筑等各个领域,但其具有潜在的火灾危险,因此,在实际生产过程中,制备阻燃型高分子材料具有一定的必要性。制备阻燃型高分子材料常用的方法是在高分子材料中引入阻燃剂,不仅可以消除或降低材料的可燃性,还可减少火灾的发生和蔓延。阻燃剂主要分为两种,一是有机阻燃剂,二是无机阻燃剂。随着人类对环保问题的重视,无机阻燃剂由于具有危害性小、抑烟效果好、污染小而被广泛应用于高分子加工过程中,以提高高分子基体的阻燃性能。
随着科技的发展,无机纳米材料已逐渐应用于人们的日常生活中。水滑石和石墨烯因具有独特的结构和特殊的性能而受到研究者的广泛关注。水滑石是由层间阴离子及带正电荷层板堆积而成的二维层状材料,具有主体层板金属离子组成的可调变性、主体层板电荷密度及其分布的可调变性、插层阴离子客体种类及数量可调变性和层内空间可调变性等多种结构特点,可将其引入高分子基体中,从而广泛应用于阻燃、吸附和催化等不同的领域。而石墨烯也是一种二维层状材料,是目前已知最薄、最坚硬的纳米材料,具有结构稳定、超强导电性、超高强度和优异的韧度等优异特性,可将其引入高分子基体中,由于其特殊的组成和结构,可广泛应用在阻燃、电子信息和生物医学等领域。因此,水滑石和石墨烯两种二维层状材料在阻燃领域均有一定的发展前景。为进一步提高高分子材料的阻燃性能,有不少研究者采用不同方法制备水滑石-石墨烯(LDH-rGO)复合材料,并将其引入高分子体系中,制备聚合物基LDH-rGO复合材料,探究其阻燃性能。
本文将主要综述LDH-rGO的基本性能及制备方法和聚合物基LDH-rGO复合材料的制备方法,重点介绍聚合物基LDH-rGO复合材料在阻燃方面的应用研究进展。最后,结合本领域现状和课题组前期研究基础,对聚合物基LDH-rGO复合材料未来的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安文
马建中
徐群娜
关键词:  水滑石-石墨烯  阻燃  聚合物    
Abstract: In recent years, polymer materials have been widely used in civil, industrial and construction fields. However, most of the traditional macromolecule materials are composed of hydrocarbon elements in the process of production and processing, which have potential fire hazards. Therefore, it is necessary to prepared flame retardant polymer in the production process. The common method of preparing flame retardant polymer is introduce flame retardant into polymer materials. Not only to overcome or reduce the flammability of materials, but also reduce the occurrence and spread of fire. Flame retardants are mainly divided into two types: organic and inorganic flame retardants. With the importance of environmental protection, inorganic flame retardants have been widely used in polymer processing to improve the flame retardancy for their less harmfulness, good smoke suppression effect and less pollution.
With the development of science and technology, inorganic nanomaterials have been gradually applied in daily life. Layered double hydroxides (LDH) and graphene have attracted much attention because of unique structure and special properties. LDH is a two-dimensional layered material consisting of interlayer anions and positively charged layers. It has many structural characteristics, such as adjustable variability of metal ions composition, charge density and distribution of main layers, adjustable variability of species and quantity of intercalated anions, and adjustable variability of space in layers. It is used in different fields such as flame retardant, adsorption and catalysis. Graphene is also a two-dimensional layered material. It is the thinnest and hardest nanomaterial known at present. It has excellent properties such as structural stability, superconductivity, super-high strength and excellent toughness. Graphene can be introduced into polymer because its special composition and structure, it can be widely used in flame retardant, electronic information and biomedical research fields. Therefore, two kinds of materials, LDH and graphene, have certain development prospects in the field of flame retardant. In order to further improve the flame retardant properties of polymer, many resear-chers have prepared LDH-rGO composites via different methods and introduced them into polymer system to prepare polymer-based LDH-rGO composites. The results showed that polymer-based LDH-rGO composites not only can improved flame retardant significantly, but also be widely used in batteries, adsorption, catalysis and other fields.
In this paper,we reviewed the basic properties and preparation methods of LDH-rGO and the preparation methods of polymer-based LDH-rGO composites. The application of polymer-based LDH-rGO composites in flame retardant was introduced. Finally, the future development trend of polymer-based LDH-rGO composites was prospected based on the current situation in this field and the previous research foundation of the research group.
Key words:  layered double hydroxides-gaphene    flame retardancy    composite
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TQ630.4+3  
  TQ314.1  
基金资助: 国家自然科学基金重点项目(21838007);陕西省创新人才推进计划-青年科技新星项目(2019KJXX-011)
通讯作者:  majz@sust.edu.cn   
作者简介:  安文,2017年6月毕业于宝鸡文理学院,获得理学学士学位。现为陕西科技大学轻工科学与工程学院硕士研究生,在马建中教授的指导下进行科学研究。目前主要从事天然产物基有机-无机纳米复合材料的研究。
马建中,现任陕西科技大学校长,博士研究生导师。国务院学位委员会轻工技术与工程学科评议组召集人,主持国家重点研发计划、973预研计划、863计划、国家自然科学基金重点项目及横向项目50余项,获得国家科技进步二等奖1项,国家技术发明二等奖1项,何梁何利基金产业创新奖1项(第一完成人),主要研究方向有:(1)水性高分子的设计与和合成,(2) 有机/无机纳米复合材料的关键技术,(3)轻纺化学产品的技术与应用。出版著作8部,申请PCT国际发明专利10项;授权国家发明专利80余项,实用新型专利4项;发表学术论文400余篇(SCI/EI 200余篇,ESI高被引3篇)。
引用本文:    
安文, 马建中, 徐群娜. 聚合物基水滑石-石墨烯复合阻燃材料的研究进展[J]. 材料导报, 2019, 33(Z2): 604-608.
AN Wen, MA Jianzhong, XU Qunna. Research Progress of Polymer-based Hydrotalcite-Graphene Flame RetardantComposites. Materials Reports, 2019, 33(Z2): 604-608.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/604
1 Li Y C, Schulz J, Mannen S, et al. ACS Nano,2010,4(6),3325.
2 胡竟成.化工管理,2013(14),86.
3 Xu W, Zhang B, Wang X, et al. Journal of Hazardous Materials,2018,343,364.
4 Daud M, Kamal M S, Shehzad F, et al. Carbon,2016,104,241.
5 Ma W, Wang L, Xue J, et al, Journal of Alloys and Compounds,2016,662,315.
6 贾潞,马建中,高党鸽,等.化学进展,2018,30(2/3),295.
7 周良芹,付大友,袁东.四川理工学院学报(自然科学版),2013,26(5),1.
8 Jai L, Ma J Z, Gao D G. et al. Applied Clay Science,2018,(152),22.
9 林彦军,周永山,王桂荣,等.石油化工,2012,41(1),1.
10 朱玉刚,董延茂.塑料工业,2012,40(4),19.
11 Ming Z, Peng D, Qu B. Polymer Composites,2010,30(7),1000.
12 艾书伦,刘航,陈朝霞,等.粘接,2013,(12),84.
13 Zhang Q H, Hou C H, Wu X H, et al. Spectroscopy and Spectral Analysis,2017,37(7),2294.
14 林俊,王伟伟,陈鹭琛,等.中国科技论文,2017,4(12),459.
15 Wei L, Zhang W, Ma J, et al. Carbon,2019,149,679.
16 Yu B, Shi Y Q, Yuan B H, et al. Journal of Materials Chemistry A,2015,3(15),8034.
17 胡静.石墨烯/水性聚氨酯阻燃纳米复合材料的制备与性能研究.博士学位论文,青岛科技大学,2014.
18 林雅洁.环境与可持续发展,2017,42(3),95.
19 Huang G, Chen S, Song P, et al. Applied Clay Science,2014,88-89,78.
20 Xu W, Zhang B, Xu B, et al. Composites Part A,2016,91,30.
21 Mallakpour S, Dinari M. Journal of Thermal Analysis and Calorimetry,2015,119,1905.
22 Ma H, He J, Xiong D B, et al. ACS Applied Materials & Interfaces,2016,8,1992.
23 Dong X Y, Wang L, Wang D, et al. Langmuir,2012,28,293.
24 Gunjakar J L, Kim I Y, Lee J M, et al. Journal of Physical Chemistry C.2014,118,3847.
25 Lan M, Fan G L, Yang L, et al. Industrial & Engineering Chemistry Research,2014,53,12943.
26 Xie R, Fan G, Ma Q, et al. Journal of Materials Chemistry A,2014,2(21),7880.
27 Li H, Zhu G, Liu Z H, et al. Carbon,2010,48(15),4391.
28 Gao Z, Wang J, Li Z, et al. Chemistry of Materials,2011,23(15),3509.
29 Zhao X, Cao J P, Zhao J, et al. Chemical Physics Letters,2014,605-606,77.
30 Hibino T, Ohyah. Applied Clay Science,2009,45(3):123.
31 Chen D, Wang X, Liu T, et al. ACS Applied Materials & Interfaces,2010,2(7),2005.
32 Xu J, Gai S, He F, et al. Journal of Materials Chemistry,2014,2(4),1022.
33 Cai X, Shen X, Ma L, et al. Chemical Engineering Journal,2015,268,251.
34 张海英.溶剂热法原位制备环氧纳米杂化材料及其功能化研究.博士学位论文,上海交通大学,2011.
35 Lonkar S P, Raquez J M, Dubois P. Nano-Micro Letters,2015,7(4),332.
36 Liu S, Yan H, Fang Z, et al. RSC Advances,2014,4(36),18652.
37 Xu W Z, Wang X L, Liu Y C, et al. Polymer Degradation and Stability,2018,154,27.
38 杨关键,吴红军.化学工程师,2017,31(12),62.
39 武洋.层状双氢氧化物—石墨烯杂化材料的合成及其对聚氨酯的抑烟减毒研究.博士学位论文,青岛科技大学,2018.
40 张梓澜.石墨烯/金属氢氧化物复合材料的制备及电化学性能研究.博士学位论文,华东理工大学,2016.
41 Wang X, Zhou S, Xing W, et al. Journal of Materials hemistry A,2013,1(13),4383.
42 Hong N, Song L, Wang B, et al. Materials Research Bulletin,2014,49,657.
43 Cao X, Pan G, Huang P, et al. Langmuir,2017,33(33),8225.
44 Xi B, Verma L K, Li J, et al. ACS Applied Materials & Interfaces,2012,4(2),1093.
45 Maji K, Haldar D. ACS Omega,2017,2(5),1938.
46 Manna J, Begum G, Kumar K P, et al. ACS Applied Materials & Interfaces,2013,5(10),4457.
[1] 李兴建, 白宝仕, 刘升, 苗玉杰, 郑朝晖, 丁小斌. 具有相分离结构的PMMA/PEG半互穿网络形状记忆高分子[J]. 材料导报, 2020, 34(2): 2142-2146.
[2] 蒋芳, 雷婷, 李声剑, 任子旋, 王利莲, 刘萌, 汤立红, 王世雄. 聚合物吸附剂的制备及在水体重金属污染净化应用中的研究进展[J]. 材料导报, 2019, 33(Z2): 526-532.
[3] 张万里, 郑刚, 孙斌, 陈卡凌, 沈翔. 乙烯-三氟氯乙烯共聚物的制备及其在电线电缆上的应用进展[J]. 材料导报, 2019, 33(Z2): 609-612.
[4] 张新天, 姚鑫航, 蓝群力. 路用聚合物稳定碎石基层养生规律分析[J]. 材料导报, 2019, 33(Z2): 639-642.
[5] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[6] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[9] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[10] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[11] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[12] 周颖, 张道海, 秦舒浩. DOPO衍生物的合成与阻燃应用研究现状[J]. 材料导报, 2019, 33(5): 901-906.
[13] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[14] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[15] 岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed