Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1251-1256    https://doi.org/10.11896/cldb.18040185
  无机非金属及其复合材料 |
吸热型碳氢燃料正辛烷的热分解机理
刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光
重庆大学能源与动力工程学院,低品位能源利用技术及系统教育部重点实验室,重庆 400030
Mechanism of Thermal Decomposition of Endothermic Hydrocarbon Fuel n-Octane
LIU Chao, QIU Shuyi, HUANG Hongmei, GUO Ping, HUO Erguang
Key Laboratory of Low-grade Energy Utilization Technology & System of Ministry of Education, School of Energy & Power Engineering, Chongqing University, Chongqing 400030
下载:  全 文 ( PDF ) ( 3475KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用反应分子动力学方法,对正辛烷在不同温度条件下的热解特性进行研究,并用密度泛函理论(DFT)对结果进行验证比较。结果表明:正辛烷初始反应为八种热解均裂反应,分别为四种碳碳键断裂和四种碳氢键断裂,且碳碳键比碳氢键更容易发生断裂,分子端部的化学键断裂比较困难。讨论了温度对热解产物的影响,热解的主要产物是H2、CH4、CH2=CH2,其他产物为CH3-CH3。H2有两种形成机理,分别是自由基攻击反应和自由基间结合反应。CH4有两种形成机理,与H2的相似。CH2=CH2的形成机理为大分子自由基β键断裂反应。本工作从分子尺度研究了正辛烷的热解机理,为其他吸热型碳氢燃料的热裂解特性研究提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘朝
邱舒怿
黄红梅
郭萍
霍二光
关键词:  反应力场(ReaxFF)  正辛烷  热解  分子动力学    
Abstract: The pyrolytic feature of n-octane was investigated by utilizing ReaxFF molecular dynamics (RMD) simulations under the condition of different temperatures and the result was compared with density functional theory (DFT) simulations. The result indicates that there are eight main pathways in the initial reaction path of n-octane, which are divided into C-C bond rupture and C-H bond rupture. C-C bond rupture is easier than C-H bond rupture and it is difficult to break the bonds at the end of the molecular. The effect of temperature on the pyrolytic product was discussed and the main products of the pyrolysis are H2, CH4, CH2=CH2, and CH3-CH3 molecule is also observed in the pyrolysis process. The formation of H2 has two mechanisms, the reaction of the free radical attacking and the reaction of the combination of the free radicals. The formation me-chanism of CH4 is same as that of H2. The formation mechanism of CH2=CH2 is β bond break reaction of macromolecular radical. Our work presents the mechanism of n-octane thermal decomposition from a molecule level and provides a reference for studying the thermal decomposition of endothermic hydrocarbon fuel.
Key words:  reactive force field (ReaxFF)    n-octane    thermal decomposition    molecular dynamics
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TK123  
基金资助: 国家自然科学基金(51576019);重庆大学大学生科研训练计划(第九届)
作者简介:  刘朝,重庆大学能源与动力工程学院,教授、博士生导师,email: liuchao@cqu.edu.cn。中国工程热物理学会理事。1996年毕业于重庆大学,获工程热物理专业工学博士学位。
引用本文:    
刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
LIU Chao, QIU Shuyi, HUANG Hongmei, GUO Ping, HUO Erguang. Mechanism of Thermal Decomposition of Endothermic Hydrocarbon Fuel n-Octane. Materials Reports, 2019, 33(8): 1251-1256.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040185  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1251
1 Herbinet O, Marquaire P M, Battin-leclerc F,et al.Journal of Analytical and Applied Pyrolysis, 2007,78(2), 419.
2 Chung H S, Chen C S H, Kremer R A, et al. Energy & Fuels, 1999,13(3),641.
3 Xiao J. Pyrolysis and coking of endothermic hydrocarbon fuels under supercritical condition. Master’s Thesis, Zhejiang University, 2013(in Chinese).
肖娟.吸热型碳氢燃料的超临界裂解与结焦研究. 硕士学位论文, 浙江大学, 2013.
4 Guo Y H, Su W H, Yu Y Z, et al. Journal of Henan Normal University (Natural Science Edition), 2015(3),82(in Chinese).
郭玉华,苏文辉,郁有祝,等. 河南师范大学学报(自然科学版),2015(3),82.
5 Beste A.Energy & Fuels,2014,28(11),7007.
6 Bhoi S, Banerjee T, Mohanty K. Fuel, 2014,136, 326.
7 Wen Y, Xue X, Long X,et al.Journal of Physical Chemistry A,2016, 120, 3929.
8 Diao Z, Zhao Y, Chen B,et al. Journal of Analytical & Applied Pyrolysis, 2013, 104, 618.
9 Mishra B K, Chakrabartty A K, Deka R C. Molecular Modeling,2013,19(8),3263.
10 Mishra B K, Lily M, Chakrabartty A K, et al. New Journal of Chemistry,2014,38(7),2813.
11 Lily M, Mishra B K, Chandra A K. Fluorine Chemistry, 2014,161,51.
12 Gour N K, Deka R C. Chemical Monthly,2014,145(11),1759.
13 Wang M, Liu C.Analytical & Applied Pyrolysis,2016, 117,325.
14 Zhang Y, Liu C, Chen X. Analytical & Applied Pyrolysis,2016,119,199.
15 Liu C, Zhang Y, Huang X. Fuel Processing Technology,2014,123(7),159.
16 Du B, Feng C, Zhang W. Chemical Physics Letters,2009, 479(1-3),37.
17 Qu Y, Su K, Wang X, et al. Computational Chemistry,2010,31(7),1421.
18 Chenoweth K, van Duin A C T V, Goddard W A. Physical Chemistry A, 2008,112(5),1040.
19 Strachan A, Kober E M, van Duin A C T V, et al. Chemical Physics,2005,122(5),54502.
20 van Duin A C T V, Zeiri Y, Dubnikova F, et al. American Chemical Society,2005,127(31),11053.
21 Zhang L, van Duin A C T V, Zybin S V, et al. Physical Chemistry B,2009,113(31),10770.
22 Zhang L, Zybin S V, van Duin A C T V, et al. Physical Chemistry A,2009,113(40),10619.
23 van Duin A C T V, Dasgupta S, Lorant F, et al.Physical Chemistry A,2001,105(41),9396.
24 Sorensen M R, Volter A F J. Chemical Physics,2000,112(21),9599.
25 Yu N, Wang M, Qin L, et al. Acta Petrolei Ei Sinica (Petroleum Proces-sing Section), 2016,32(4),762(in Chinese).
于宁,王铭,秦岭,等. 石油学报(石油加工), 2016, 32(4),762.
[1] 王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
[2] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[3] 朱亚明, 赵春雷, 刘献, 赵雪飞, 高丽娟, 程俊霞. 煤沥青中甲苯可溶物的基础物性研究[J]. 材料导报, 2019, 33(2): 368-372.
[4] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[5] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[6] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[7] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[8] 豆艳坤,贺新福,贾丽霞,王东杰,吴石,杨文. Cu析出物对α-Fe辐照硬化贡献机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 307-312.
[9] 丁军, 汪建, 黄霞, 王路生, 赵昊男, 宋鹍. 含孔洞缺陷的单晶α-Ti单轴拉伸下的微观变形机理及力学性能[J]. 材料导报, 2018, 32(18): 3171-3180.
[10] 刘泽伟, 闫思佳, 夏子皓, 田霖, 刘煜康, 王竟成, 胡建杭. 温度和CO2对热解成型生物质炭孔隙结构和表面分形维数的影响[J]. 材料导报, 2018, 32(17): 2925-2931.
[11] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[12] 李金灵, 屈撑囤, 朱世东, 范夏韵, 朱治辉. 含油污泥热解残渣特性及其资源化利用研究概述[J]. 材料导报, 2018, 32(17): 3023-3032.
[13] 方 炜,王 磊. 碳纳米豆荚内C60分子的振荡行为[J]. 《材料导报》期刊社, 2018, 32(10): 1737-1742.
[14] 丁军, 刘泊, 王路生, 黄霞, 宋鹍. 微观尺度下单晶铜熔点多因素影响的分子动力学模拟研究[J]. 《材料导报》期刊社, 2017, 31(6): 147-152.
[15] 林伟辉, 付甲, 王志华, 辛浩. 不同钙硅比水化硅酸钙力学性能的分子动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(20): 158-163.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed