Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2450-2455    https://doi.org/10.11896/cldb.18060142
  高分子与聚合基复合材料 |
针刺密度对三维碳毡增强树脂炭复合材料力学性能的影响
樊凯, 卢雪峰, 张典堂, 钱坤
江南大学生态纺织教育部重点实验室,无锡 214122
Effect of Needle Density on Mechanical Properties of Three-dimensional Carbon Felt Reinforced Resin-based Carbon Composites
FAN Kai, LU Xuefeng, ZHANG Diantang, QIAN Kun
Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122
下载:  全 文 ( PDF ) ( 4064KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用具有不同针刺密度的网胎层/无纬布叠层碳纤维针刺毡为预制体,以酚醛树脂为先驱体,通过液相浸渍炭化工艺(LPI)制备针刺碳毡增强树脂炭复合材料。通过三点弯曲和压缩试验研究了碳毡针刺密度对树脂炭复合材料力学性能的影响,并探讨了针刺碳毡增强树脂炭复合材料的损伤破坏机制。结果表明:当采用密度为0.4 g/cm3的针刺碳毡时,针刺密度会对碳毡的孔径分布产生影响,影响其浸渍炭化过程,并对树脂炭复合材料的力学性能有较大影响。当针刺深度为13 mm、针刺密度控制在20~50 针/cm2时,复合材料的弯曲性能先增强后下降,并在针刺密度为40 针/cm2时达到最高。随着针刺密度的增加,复合材料的横向压缩性能基本不变,纵向压缩性能逐渐增强。针刺碳毡增强树脂炭复合材料弯曲和压缩破坏特征分别为脆性断裂和塑性断裂,弯曲主要破坏模式为底部倒“V”型开裂破坏;横向压缩主要有三种破坏方式:分层破坏、层间剪切破坏及树脂炭压溃破坏。随着针刺密度的增加,纵向压缩破坏失效模式由层间分层及剪切破坏向端头多层纤维折断模式破坏转变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊凯
卢雪峰
张典堂
钱坤
关键词:  针刺密度  树脂炭复合材料  力学性能  破坏机理    
Abstract: Needled carbon felt reinforced resin-based carbon composites was prepared by liquid impregnation-carbonization process (LPI) using non-woven cloth/web needle carbon fiber felt with different needle-punching densities as preform, and phenolic resin as precursor. Three-point bending and compression tests were employed to study the influence of needle density on the mechanical properties of resin-based carbon composites. The damage and failure mechanisms of needled carbon felt reinforced resin-based carbon composites were also discussed. The results show that the needle-punching density has a great influence on the pore size distribution of preform, it affects the impregnation-carbonization process, which consequently result in the mechanical properties of the resin-based carbon composites when the density of needled carbon felt is 0.4 g/cm3. In the meantime, when the needle depth is 13 mm, with the needle density increasing from 20 to 50 punch/cm2, the flexural properties of composites increase firstly and then decrease. When the needle density is 40 punch/cm2, the flexural properties of composites reach the highest. The main failure mode of bending is cracking failure of the bottom inverted “V” type. In addition, with the increase of the needle density, the transverse compression performance of the composite is basically unchanged, and the longitudinal compression performance is gradually improved. There are three failure modes of transverse compression such as stratification and interlayer failure, interlayer shear failure and resin-based carbon crushing failure. With the increase of needle density, the failure mode of longitudinal compression of composites is changed from interlayer delamination and shear failure to fracture failure of multilayer fibers.
Key words:  needle density    resin-based carbon composites    mechanical properties    failure mechanism
                    发布日期:  2019-06-19
ZTFLH:  TB332  
基金资助: “十三五”国家重点研发计划项目(2016YFC-0304301;2016YFB0303200);江苏省科技成果转化项目(BA2016170);中央高校基本科研业务费专项资金(JUSRP51718A);江苏省研究生科研创新计划项目(KYCX18-1836);江苏高校优势学科建设工程资助项目(PAPD)
通讯作者:  sandylxf@tom.com   
作者简介:  樊凯,现为江南大学纺织服装学院硕士研究生,2015年本科毕业于太原理工大学。在钱坤教授和卢雪峰副教授指导下,目前主要研究方向为纺织复合材料、C/C复合材料。卢雪峰,现任江南大学纺织服装学院副教授,硕士研究生导师。2005年毕业于华东交通大学材料成型及其控制专业,获学士学位,2012年毕业于中南大学材料学专业,获得博士学位,主要研究方向为纺织复合材料、纳米纤维增强材料、C/C复合材料、摩擦材料等;主持江苏省产学研项目一项、中央高校基本科研业务费专项资金资助三项;参与973课题、国家重点研发计划、军工项目、江苏省产学研项目等10余项;主持和参与横向课题8项。在Carbon等国内外期刊发表论文18篇,申请国家发明专利12项,授权7项。
引用本文:    
樊凯, 卢雪峰, 张典堂, 钱坤. 针刺密度对三维碳毡增强树脂炭复合材料力学性能的影响[J]. 材料导报, 2019, 33(14): 2450-2455.
FAN Kai, LU Xuefeng, ZHANG Diantang, QIAN Kun. Effect of Needle Density on Mechanical Properties of Three-dimensional Carbon Felt Reinforced Resin-based Carbon Composites. Materials Reports, 2019, 33(14): 2450-2455.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060142  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2450
1 Yi X S, Du S Y, Zhang L T. Composite materials handbook, Chemical Industry Press, China, 2009(in Chinese).
益小苏, 杜善义, 张立同. 复合材料手册, 化学工业出版社, 2009.
2 Huang B Y, Xiong X. Manufacturing of carbon/carbon composites for aircraft brakes, Hunan Science & Technology Press, China, 2007(in Chinese).
黄伯云, 熊翔. 高性能炭/炭航空制动材料的制备技术, 湖南科学技术出版社, 2007.
3 Liang S D, Effect of preform structure on flat CVI process and material properties. Master's Thesis, Central South University, China, 2011(in Chinese).
梁世栋. 预制体结构对平板CVI过程及材料性能的影响. 硕士学位论文, 中南大学, 2011.
4 Zhang J. Preparation and properties study of variable density preform C/C composite materials. Master's Thesis, Jiangnan University, China, 2014(in Chinese).
张洁. 变密度预制体C/C复合材料的制备及其性能研究. 硕士学位论文, 江南大学, 2014.
5 Chen X M, Li C, Zhang C Y, et al. Composites Part A, 2016, 85,12.
6 Zhang J C, Luo R Y, Qiao X, et al. Materials Science & Engineering A, 2011, 528(15),5002.
7 Li D S, Duan H W, Wang W, et al. Composite Structures, 2017, 172,229.
8 Hu Y J, Luo R Y, Zhang Y F, et al. Materials Science & Engineering A, 2010, 527(3),797.
9 Chen T F, Liao J Q, Liu G S, et al. Carbon, 2003, 41(5),993.
10 Zheng J H, Li H J, Cui H, et al. Journal of Solid Rocket Technology, 2017, 40(2),221.
11 Xie J B. Parametric modeling of needling process and constitutive relationship of needled composite. Ph.D. Thesis, Harbin Institute of Technology, China, 2016(in Chinese).
谢军波. 针刺预制体工艺参数建模及复合材料本构关系研究. 博士学位论文, 哈尔滨工业大学, 2016.
12 Klucˇáková M. Acta Materialia, 2005, 53(14),3841.
13 Jiang J, Xu Y D, Cai Y Z, et al. Acta Materiae Compositae Sinica, 2009, 26(5),105(in Chinese).
姜娟, 徐永东, 蔡艳芝, 等.复合材料学报, 2009, 26(5),105.
14 Li Z, Long Y, Li Y, et al. Ceramics International, 2016, 42(8),9527.
15 Zhang P. Microstructure modeling and prediction of effective properties of 3D needled C/C composites. Master's Thesis, Northwestern Polytechnical University, China, 2016(in Chinese).
张盼. 三维针刺C/C复合材料的微结构建模及力学性能预测. 硕士学位论文, 西北工业大学, 2016.
16 Zhang X H, Li H J, Hao Z B, et al. Journal of Inorganic Materials, 2007, 22(5),963(in Chinese).
张晓虎, 李贺军, 郝志彪, 等. 无机材料学报, 2007, 22(5),963.
17 Lu X F, Xiao P. Ceramics International, 2014, 40(7),10705.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed