Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3595-3600    https://doi.org/10.11896/j.issn.1005-023X.2018.20.018
  金属与金属基复合材料 |
冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应
祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟
重庆大学材料科学与工程学院,重庆 400044;
Gradient of Microstructure and Texture Evolution of Cold Rolled High Purity Tantalum Plate During Annealing Process
ZHU Jialin, LIU Shifeng, LIU Yahui, JI Jingli, LI LiJuan
College of Materials Science and Engineering, Chongqing University, Chongqing 400044;
下载:  全 文 ( PDF ) ( 6401KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究综合采用电子背散射衍射(EBSD)、X射线衍射(XRD)和显微硬度等技术,系统研究了87%周向轧制钽板在1 323 K下经5 min、10 min、30 min、60 min、90 min和120 min退火后沿厚度方向的显微组织演变规律。实验结果表明,中心区域的形变组织率先产生再结晶晶核且该区域的形核过程主要由大角度晶界形核机制主导,而近表面区域的形核则由亚晶形核机制发挥主要作用。其次,中心区域比近表面区域表现出更快的再结晶动力学,再结晶完成后,中心{111}〈uvw〉织构(〈111〉∥ND(板法向))强度高,而近表面{100}〈uvw〉织构(〈100〉∥ND)强度相对较高。变形钽板中心区域的{111}〈uvw〉织构强度高,储存能高且晶粒内部分裂严重,所以较早发生再结晶;而近表面区域{100}〈uvw〉织构强度高且晶粒内部分裂程度相对较小,储存能低,使得回复孕育期较长。由此导致再结晶组织和织构沿厚度方向上产生梯度效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祝佳林
刘施峰
柳亚辉
姬静利
李丽娟
关键词:  高纯钽  退火时间  微观组织  大角度晶界形核机制  亚晶形核机制  织构  储存能    
Abstract: 135° clock-rolled Ta plates with 87% thickness reduction were annealed at 1 323 K for different time (5 min, 10 min, 30 min, 60 min, 90 and 120min, respectively). The through-thickness microstructure evolution was systematically studied by electron back-scattered diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. It was revealed that the recrystallization nucleus preferred to appear in the central region dominated by high angle boundary nucleation mechanism in this process. However, subgrain nuclear mechanism played an important role in the nucleation of near surface zone. Besides, the center area showed faster recrystallization kinetics than the near surface area, and after recrystallization, the center of {111}〈uvw〉(〈111〉∥ND)texture was stronger whereas the near surface possessed much more {100}〈uvw〉(〈100〉∥ND). Such a difference was mainly contributed to the strong {111} texture of the center layer possessing high stored energy as well as its severe fragmentation of internal grain. On the contrary, {100} texture accounting for a large proportion of the near surface zone, which contained lower stored energy and small internal misorientations, led to a longer incubation period for recrystallization nucleation. As a result, the recrystallization texture gradient along the thickness direction appeared.
Key words:  high purity tantnlum    annealing time    microstructure    high angle boundary nucleation mechanism    subgrain nucleation mechanism    texture    stored energy
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TG146.4+16  
基金资助: 国家自然科学基金青年项目(51421001);国家科技重大专项资金资助(2011ZX02705);重庆市科委自然科学基金计划资助项目(2017jcyjAX0094)
作者简介:  祝佳林:男,1993年生,硕士研究生,主要从事钽形变机理及织构研究 E-mail:jialinzhu@cqu.edu.cn 刘施峰:通信作者,男,1981年生,副教授,博士研究生导师,主要从事集成电路制造用溅射靶材微观组织及织构优化等研究 E-mail:liusf06@cqu.edu.cn
引用本文:    
祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
ZHU Jialin, LIU Shifeng, LIU Yahui, JI Jingli, LI LiJuan. Gradient of Microstructure and Texture Evolution of Cold Rolled High Purity Tantalum Plate During Annealing Process. Materials Reports, 2018, 32(20): 3595-3600.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.018  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3595
1 Cardonne S M, Kumar P, Michaluk C A, et al. Tantalum and its alloys[J]. International Journal of Refractory Metals & Hard Mate-rials,1995,13(4):187.
2 Michaluk C A, Field D P, Nibur K A, et al. Effects of local texture and grain structure on the sputtering performance of tantalum[J]. Materials Science Forum,2002,408:1615.
3 Michaluk C A. Correlating discrete orientation and grain size to the sputter deposition properties of tantalum[J]. Journal of Electronic Materials,2002,31(1):2.
4 Shang Zaiyan, Jiang Xuan, Li Yongjun, et al. Sputtering targets used in integrated circuit[J]. Rare Metals,2005,29(4):97(in Chinese).
尚再艳,江轩,李勇军,等.集成电路制造用溅射靶材[J].稀有金属,2005,29(4):97.
5 Yang Qian, Zhang Zhiqing, Zou Bin, et al. Investigation on microstructure and texture in high pure tantalum sputtering targets by EBSD[J]. Journal of Chinese Electron Microscopy Society,2010,29(1):85(in Chinese).
杨谦,张志清,邹彬,等.高纯Ta溅射靶材微观组织与织构的EBSD研究[J].电子显微学报,2010,29(1):85.
6 Zhang Z, Kho L, Wickersham C E. Effect of grain orientation on tantalum magnetron sputtering yield[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films,2006,24(4):1107.
7 Reza M, Sajuri Z, Yunas J, et al. Effect of sputtering target’s grain size on the sputtering yield, particle size and coercivity (Hc) of Ni and Ni20Al thin films[J]. IOP Conference Series: Materials Science and Engineering,2016,114(1):012116.
8 Li Zhaobo, Zhang Chunheng, Li Guipeng, et al. Research on grain size controlling process of niobium target used for sputtering and coating[J]. Development and Application of Materials,2010,25(6):33(in Chinese).
李兆博,张春恒,李桂鹏,等.溅射镀膜用铌靶材晶粒尺寸控制工艺研究[J].材料开发与应用,2010,25(6):33.
9 Chen Ming, Zhu Xiaoguang, Wang Xinping, et al. Study on tantalum grain refinement process and microstructure, texture[J]. Hot Working Technology,2010,39(8):26(in Chinese).
陈明,朱晓光,王欣平,等.Ta晶粒细化工艺及组织、织构的研究[J].热加工工艺,2010,39(8):26.
10 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena (second edition)[M]. Amsterdam: Elsevier,2004.
11 Vandermeer R A, Snyder W B. Recovery and recrystallization in rolled tantalum single crystals[J]. Metallurgical Transactions A,1979,10(8):1031.
12 Liu S F, Fan H Y, Deng C, et al. Through-thickness texture in clock-rolled tantalum plate[J]. International Journal of Refractory Metals & Hard Materials,2015,48:194.
13 Pawlik K. Determination of the orientation distribution function from pole figures in arbitrarily defined cells[J]. Physica Status Solidi,2010,134(2):477.
14 Fan H, Liu S, Li L, et al. Largely alleviating the orientation dependence by sequentially changing strain paths[J]. Materials & Design,2016,97:464.
15 Sevillano J G, Houtte P V, Aernoudt E. Inhomogeneity in the stored energy of deformed BCC-metals[J]. Scripta Metallurgica,1976,10(8):775.
16 Borbely A, Driver J H, Ungar T. An X-ray method for the determination of stored energies in texture components of deformed metals; application to cold worked ultra high purity iron[J]. Acta Materialia,2000,31(10):2005.
17 Jensen D J. Growth rates and misorientation relationships between growing nuclei/grains and the surrounding deformed matrix during recrystallization[J]. Acta Metallurgica et Materialia,1995,43(11):4117.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[5] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[6] 祝佳林, 邓超, 柳亚辉, 刘施峰, 张玉. 钽板退火过程中的储存能演变与再结晶行为[J]. 材料导报, 2019, 33(4): 654-659.
[7] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[8] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[9] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[10] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[11] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[12] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[13] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[14] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[15] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed