Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 83-86    https://doi.org/10.11896/j.issn.1005-023X.2017.04.019
  材料研究 |
配分时间对Q&P钢力学性能及显微组织的影响*
李辉1, 米振莉2, 张华3, 赵奇1
1 烟台南山学院工学院, 烟台265700;
2 北京科技大学冶金工程研究院, 北京100083;
3 山东南山铝业股份有限公司国家铝合金压力加工工程技术研究中心, 烟台 265713
Influence of Partition Time on Mechanical Properties and
Microstructure of Q&P Steel
LI Hui1, MI Zhenli2, ZHANG Hua3, ZHAO Qi1
1 College of Engineering,Yantai Nanshan University, Yantai 265700;
2 Engineering Research Institute,University of Science and Technology Beijing, Beijing 100083;
3 National Engineering Research Center for Plastic Working of Aluminum Alloys, Shandong Nanshan Aluminum Co., Ltd., Yantai 265713
下载:  全 文 ( PDF ) ( 1898KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 设计了一种中碳中锰Q&P(Quenching and partitioning)钢,基于热力学平衡理论计算分析了其相变过程,通过扫描电镜(SEM)、背散射电子衍射(EBSD)和透射电镜(TEM)研究了实验钢经不同热处理后的微观组织,测试了其力学性能,并采用X射线衍射仪(XRD)进一步分析了拉伸断裂前后残留奥氏体含量的演变规律。结果表明:室温下实验钢微观组织为板条状马氏体和弥散分布的残留奥氏体;残留奥氏体主要存在于马氏体板条之间和原始奥氏体晶界处;随配分时间延长,抗拉强度逐渐降低,延伸率呈现升高趋势;试样拉断后,断口处残留奥氏体含量在3.5%~4.5%之间,明显低于拉伸前的含量(6.94%~10.78%),说明大部分残留奥氏体在拉伸过程中发生了TRIP效应,提高了实验钢的塑性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李辉
米振莉
张华
赵奇
关键词:  Q&P工艺  微观组织  残留奥氏体  配分时间    
Abstract: Based on the regulating and controlling theory of thermodynamic, the microstructure evolution and mechanical properties of a new designed medium-carbon-manganese steel after Q&P process was studied by SEM,EBSD and TEM. The mecha-nical properties was tested,and the evolution mechanism of retained austenite was discussed by XRD. The results indicated that the microstructure was consisted of lath martensite and dispersively distributed retained austenite; the retained austenite was emerged in the form of thin film between martensite laths and blocks along the grain boundaries; the strength decreased and the elongation increased with the increase of partition time; the fraction of retained austenite decreased from 6.94%-10.78% to 3.5%-4.5% after tensile test, which indicated the occurrence of TRIP effect and the increase of ductility.
Key words:  Q&P process    microstructure    retained austenite    partition time
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TG151.2  
基金资助: *国家自然科学基金(51101048);国家863项目(2012AA03A508)
作者简介:  李辉:男,1983年生,博士,主要从事特殊钢的开发及组织性能优化研究 E-mail:lhlwj8888@163.com
引用本文:    
李辉, 米振莉, 张华, 赵奇. 配分时间对Q&P钢力学性能及显微组织的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 83-86.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.019  或          http://www.mater-rep.com/CN/Y2017/V31/I4/83
1 De M E,Gibbs P J,Speer J G. Strategies for third generation advanced high-strength steel development[J]. Iron Steel Technol,2010,7(11):133.
2 Speer J G,Matlock D K,Moor D E,et al.Highights of recent progress in automotive sheet steel development[J].World Iron Steel,2013,13(5):48(in Chinese).
Speer J G,Matlock D K,Moor D E,等. 汽车用钢的最新研究进展[J].世界钢铁,2013,13(5):48.
3 Matlock D K,Speer J G. Third generation of AHSS: Microstructure design concepts[M].London:Springer,2009,185.
4 Speer J G,Matlock D K,et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater,2003,51(9):2611.
5 Speer J G,Streicher A M,Matlock D K,et al. Quenching and partitioning: A fundamentally new process to create high strength TRIP sheet microstructures[C]//Minerals,Met Mat Society,MPMD.Chicago,2003:505.
6 Edmonds D V,He K,Rizzo F C,et al. Quenching and partitioning martensite-A novel steel heat treatment[J]. Mater Sci Eng A,2006,438:25.
7 Santofimia M J,Zhao L,Petrov R,et al. Microstructure development during the quenching and partitioning process in a newly designed low carbon steel[J]. Acta Mater,2011,59(15):6059.
8 Thomas G A,Speer J G,Matlock D K. Quenched and partitioned microstructures produced via gleeble simulations of hot-strip mill coo-ling practices[J]. Metall Mater Trans A,2011,2:1.
9 Sun J,Yu H. Microstructure development and mechanical properties of quenching and partitioning(Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process[J]. Mater Sci Eng A,2013,586(1):100.
10 Moor E D,Lacroix S,Clarke A J,et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J]. Metall Mater Trans A,2008,39(11):2586
11 Tariq F,Baloch R A. One-step quenching and partitioning heat treatment of medium carbon low alloy steel[J]. J Mater Eng Perform,2014,23(5):1726.
12 Paravicini B E,Santofimia M J,Zhao L,et al. Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel[J]. Mater Sci Eng A,2013,559:486.
13 Xu Zuyao, Li Xuemin. Diffusion of carbide during the formation of low carbon martensite[J]. Acta Metall Sin,1983,19(2):83(in Chinese).
徐祖耀,李学敏. 低碳马氏体形成时碳的扩散[J].金属学报,1983,19(2):83.
14 Jiang Haitao,Tang Di,Mi Zhenli,et al. Effect of partitioning para-meters on the retained austenite in low-carbon Q&P steel[J]. Mater Sci Technol,2011,19(1):99(in Chinese).
江海涛,唐荻,米振莉,等. 配分工艺对低碳Q&P钢中残余奥氏体的影响[J]. 材料科学与工艺,2011,19(1):99.
15 Jiang H T,Wu H B,Tang D,et al. Influence of isothermal bainitic processing on the mechanical properties and microstructure characterization of TRIP steel[J]. J University Science Technology Beijing,2008,15(5):574.
16 Hillert M,Agren J. On the definitions of paraequilibrium and orthoe-quilibrium[J]. Scr Mater,2004,50(5):697.
17 Hillert M,Agren J. Reply to comments on “On the definition of paraequilibrium and orthoequilibrium”[J]. Scr Mater,2005,52(1):87.
18 徐祖耀.马氏体相变与马氏体(第二版)[M].北京:科学出版社,1999.
19 Martins A R A,Rizzo F,Coelho D,et al. Microstructure and mechanical properties of Ni-added high strength steels subjected to quenching and partitioning (Q&P) heat treatment[C]//Materials Science & Technology 2009 Conference and Exhibition.Pittsburgh,2009.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[5] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[6] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[7] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[8] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[9] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[10] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[11] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[12] 丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1311-1317.
[13] 张金祥, 欧阳希, 周健, 张济山. Cr含量降低对H13钢组织与力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1323-1327.
[14] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[15] 郑丽娟, 付宇明, 宗磊, 齐童. 交变磁场对高硬熔覆层成型质量的影响[J]. 材料导报, 2018, 32(6): 905-908.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed