Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 41-45    https://doi.org/10.11896/j.issn.1005-023X.2017.02.009
  材料研究 |
电子束退火法制备ZnO薄膜*
李艳丽1,2, 许壮3, 李辉4, 孔祥东1, 韩立1, 张雪娜1,2
1 中国科学院电工研究所电子束曝光技术研究组, 北京 100190;
2 中国科学院大学, 北京 100049;
3 兰州大学物理科学与技术学院, 兰州 730000;
4 中国科学院电工研究所太阳电池技术研究组, 北京 100190;
Preparation of ZnO Thin Films by Electron Beam Annealing Method
LI Yanli1,2, XU Zhuang3, LI Hui4, KONG Xiangdong1, HAN Li1, ZHANG Xuena1,2
1 Electron Beam Lithography Technology Research Group, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190;
2 University of Chinese Academy of Sciences, Beijing 100049;
3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000;
4 Group of Solar Cell Technology, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190;
下载:  全 文 ( PDF ) ( 1729KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用溶胶-凝胶法制备出ZnO的凝胶前驱膜,用电子束退火取代传统炉子退火,对前驱膜进行后处理,退火时固定电子束加速电压为10 kV,退火时间为5 min,调节聚焦束流和电子束束流,使退火温度在600~900 ℃范围内变化。扫描电镜(SEM)、X射线衍射(XRD)、原子力显微镜(AFM)和压电力显微镜(PFM)的测试结果表明,运用电子束退火法可制备出晶粒尺寸小于30 nm、沿(002)择优取向、具有压电效应的六方ZnO薄膜,且随着退火温度的升高,晶粒尺寸逐渐变大,薄膜的结晶性和取向变好,压电效应越来越明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李艳丽
许壮
李辉
孔祥东
韩立
张雪娜
关键词:  电子束  退火  溶胶-凝胶  ZnO  薄膜    
Abstract: The ZnO precursor film was prepared by sol-gel method and annealed by the electron beam which replaced the conventional furnace. The accelerating voltage was fixed at 10 kV and the annealing duration was fixed at 5 min. The annealing temperature was within the range of 600 ℃ to 900 ℃ by adjusting the focus beam current and electron beam current . The results of scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and piezoelectric force microscopy (PFM) showed that the annealed ZnO thin film was a kind of microcrystalline film, grew along the preferred (002) peak and presented piezoelectric effect. With the increase of annealing temperature, the grain size increased gradually, the crystallinity and orientation of thin film were better, the piezoelectric effect was more and more obvious.
Key words:  electron beam    annealing    sol-gel    ZnO    thin film
               出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TB34  
  O649  
基金资助: *国家自然科学基金(51177160;51472239)
作者简介:  李艳丽:女,1988年生,博士研究生,主要研究方向为电子束直写功能微结构 E-mail:liyanli@mail.iee.ac.cn 孔祥东:通讯作者,男,1966年生,副研究员,主要研究方向为电子束相关设备及应用 E-mail:slkongxd@mail.iee.ac.cn
引用本文:    
李艳丽, 许壮, 李辉, 孔祥东, 韩立, 张雪娜. 电子束退火法制备ZnO薄膜*[J]. 《材料导报》期刊社, 2017, 31(2): 41-45.
LI Yanli, XU Zhuang, LI Hui, KONG Xiangdong, HAN Li, ZHANG Xuena. Preparation of ZnO Thin Films by Electron Beam Annealing Method. Materials Reports, 2017, 31(2): 41-45.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.009  或          http://www.mater-rep.com/CN/Y2017/V31/I2/41
1 Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature[J]. Appl Phys Lett,1997,70(17):2230.
2 Nishii Junya, Hossain Faruque M, Takagi Shingo, et al. High mo-bility thin film transistors with transparent ZnO channels[J]. Jpn J Appl Phys,2003,42(4A):L347.
3 Minemoto T, Negami T, Nishiwaki S, et al. Preparation of Zn1-x-MgxO films by radio frequency magnetron sputtering[J]. Thin Solid Films,2000,372(1-2):173.
4 Yanagitani T, Kiuchi M, Matsukawa M, et al. Characteristics of pure-shear mode BAW resonators consisting of (1120) textured ZnO films[J]. IEEE Trans Ultrasonics Ferroelectrics Frequency Control,2007,54(8):1680.
5 Raj V B, Singh H, Nimal A T, et al. Origin and role of elasticity in the enhanced DMMP detection by ZnO/SAW sensor[J]. Sens Actuators B:Chem,2015,207:375.
6 Luo Jingting, Zhong Xin, Zhu Maodong, et al. Growth of ZnO thin film and its surface acoustic wave properties[J]. J Shenzhen University Science and Engineering,2015,32(1):17(in Chinese).
罗景庭,钟鑫,朱茂东,等.ZnO薄膜生长及声表面波性能研究[J]. 深圳大学学报理工版,2015,32(1):17.
7 Lee H Y, Huang H L. Performance improvement of pentacene-doped P3HT: PCBM inverted polymer solar cells with AZO nanorod array passivated using photoelectrochemical technique[J].Org Electron,2014,15(7):1362.
8 Jiang C Y, et al. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode[J]. Appl Phys Lett,2007,90(26):263501.
9 Yadav Kavita, Gahlaut Shashank K, Mehta B R, et al.Photoluminescence based H2 and O2 gas sensing by ZnO nanowires[J]. Appl Phys Lett,2016,108(7):071602.
10 Amin Muhammad, Shah Nazar Abbas, Bhatti Arshad Saleem, et al. Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts[J]. Cryst Eng Comm,2014,16(27):6080.
11 Dong Huike, Han Shuai, Wang Fei, et al. Preparation and gas-phase photocatalytic property study of nano ZnO[J]. Guangzhou Chem Ind,2015,43(7):92(in Chinese).
董慧科,韩帅,王菲,等.纳米ZnO的制备及气相光催化性能研究[J].广州化工,2015,43(7):92.
12 Qu Hua. SnO2 modified nano-ZnO photocatalyst and its catalytic performance for degradation of nonyphenol ethoxylate-10[J]. J Lanzhou University:Natural Sciences,2012,48(5):139(in Chinese).
曲华. SnO2改性纳米ZnO光催化降解NPE-10[J].兰州大学学报:自然科学版,2012,48(5):139.
13 Yu Changlin, Yang Kai, Yu Jimmy C, et al. Effects of rare earth Ce doping on the structure and photocatalytic performance of ZnO[J]. Acta Phys-Chim Sin,2011,27(2):505(in Chinese).
余长林,杨凯,余济美,等.稀土Ce掺杂对ZnO结构和光催化性能的影响[J]. 物理化学学报,2011,27(2):505.
14 Jing Liqiang, Wang Dejun,Wang Baiqi, et al. Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles[J]. J Mol Catal A: Chem,2006,244(1):193.
15 Height Murray J, Pratsinis Sotiris E, Mekasuwandumrong Okorn, et al. Ag-ZnO catalysts for UV-photodegradation of methylene blue[J]. Appl Catal B: Environ,2006,63(3):305.
16 Yang Jingchuan, Pei Yanli, Hu Ruiqing, et al. Morphology controlled synthesis of crystalline ZnO film by MOCVD: From hexagon to rhombus[J]. Cryst Eng Comm,2012,14(24):8345.
17 Wei X Q, et al. Comparative study on structural and optical properties of ZnO thin films prepared by PLD using ZnO powder target and ceramic target[J]. Opt Laser Technol,2009,41(5):530.
18 Ying Minju, Cheng Wei, Wang Xiaoxiao, et al. Surface-polarity-dependent ferromagnetism in arsenic-implanted ZnO films prepared by MBE[J]. Mater Lett,2015,144:12.
19 Ivanova T, Harizanova A, Koutzarova T, et al. Study of ZnO sol-gel films: Effect of annealing[J]. Mater Lett,2010,64(10):1147.
20 Zhang Yidong, Mi Liwei, Li Qingyu, et al. Investigation on nano-frictional performance of glucose-assisted ZnO sol-gel film on quartz substrate[J]. Wear,2012,294:313.
21 Xie Xuewu. The investigation of preparation process and properties of ZnO films via sol-gel technique[D]. Hefei:University of Science and Technology of China,2009(in Chinese).
谢学武.ZnO薄膜的溶胶凝胶法制备工艺及其性能的研究[D].合肥:中国科学技术大学,2009.
22 Nunes Arthur C, Fragomeni James M. The low pressure gas effects on the potency of an electron beam on ceramic fabric materials for space welding[J].Acta Astronaut,2002,50(1):13.
23 Zhou Chucai. Multiple scanning electron beam annealing[J]. Microfabric Technol,1983(2):57(in Chinese).
周楚材.多次扫描电子束退火[J].微细加工技术,1983(2):57.
24 Kong Xiangdong, Dai Qian, Li Han, et al. Fabrication of superconducting magnesium diboride thin films by electron beam annealing[J]. Supercond Sci Technol,2011,24:105013.
25 Dai Qian. Fabrication MgB2 thin film by electron-beam annealing method and the preparation of ultra thin MgB2 film[D]. Beijing:Peking University,2013(in Chinese).
戴倩.电子束退火法制备MgB2超导薄膜和MgB2超薄膜的制备[D].北京:北京大学,2013.
26 Caglar M, Ruzgar S. Influence of the deposition temperature on the physical properties of high electron mobility ZnO films by sol-gel process[J]. J Alloys Compd,2015,644:101.
27 Hui Wenyuan. Fabrication of PZT thin film and research on PZT thin film hydrogen annealing[D]. Shanghai:Fudan University,2012(in Chinese).
惠文渊.锆钛酸铅PZT薄膜制备及氢气退火研究[D].上海:复旦大学,2012.
28 Xu Hengxing, et al. Preparation and charaterization of ZnO piezoe-letric film[J]. J Synth Cryst,2009,38(4):880(in Chinese).
许恒星,等.ZnO压电薄膜的制备与性能表征[J]. 人工晶体学报,2009,38(4):880.
[1] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[2] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[3] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[4] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[5] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[6] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[7] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[8] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[9] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[10] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[11] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[12] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[13] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed