Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 22050004-7    https://doi.org/10.11896/cldb.22050004
  新型环境功能材料 |
UiO-66(Zr)/海藻酸钠复合材料的制备优化及净化水中As(V)的性能研究
马慧1,2, 方月1,2, 吴一楠1,2,*, 李风亭1,2
1 同济大学环境科学与工程学院,污染控制与资源化研究国家重点实验室,上海 200092
2 上海污染控制与生态安全研究院,上海 200092
Synthesis Optimization of UiO-66(Zr)/Sodium Alginate Composite Microspheres and Its Removal of As(V) in Water
MA Hui1,2, FANG Yue1,2, WU Yi’nan1,2,*, LI Fengting1,2
1 State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 4821KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了金属有机骨架UiO-66(Zr)成型材料的制备及其对水中砷酸根离子的吸附净化。通过扫描电子显微镜(SEM)、X射线衍射(XRD)、氮气吸附和平衡吸附实验等探究了UiO-66(Zr)粉末添加量和复合凝胶微球干燥方式对其成型结构和除砷性能的影响。当UiO-66(Zr) 粉末添加量为50%(质量分数)时,采用闪速冷冻法干燥得到的UiO-66(Zr)/海藻酸钠(SA)复合凝胶微球的物理化学性能最佳。进一步研究了所制备的UiO-66(Zr)/SA复合凝胶微球对水中As(V)的吸附性能,并与某商品除砷材料MN进行对比。结果表明:静态吸附条件下,As(V)初始浓度为20 mg/L、pH值为7.0时,最优成型条件下制备的UiO-66(Zr)/SA复合凝胶微球的最大吸附量为18.65 mg/g;动态填充柱吸附条件下,含1.0 g UiO-66(Zr)的复合凝胶微球材料可净化处理1.2 L初始浓度为100 μg/L的含As(V)水样,出水As(V)浓度低于10 μg/L,UiO-66(Zr)/SA复合凝胶微球的总体效能明显优于MN。结合笔者团队近期在UiO-66(Zr)绿色低成本批量制备方面的研究成果,UiO-66(Zr)/SA复合凝胶微球可作为一种水中As(V)深度净化的潜在新材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马慧
方月
吴一楠
李风亭
关键词:  金属有机骨架材料  UiO-66(Zr)  海藻酸钠  闪速冷冻成型  五价砷    
Abstract: In this work,the synthesis of metal-organic framework UiO-66(Zr)/solidum alginate(SA) composite microspheres and its adsorptive removal of As(V) from water were reported. The effects of the addition of UiO-66(Zr) powder and the drying method of the aerogel microspheres on the shaping structure and adsorption performances were comprehensively investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen sorption and adsorption test. UiO-66(Zr)/SA microspheres with the optimal physicochemical properties were obtained by mixing 50wt% powdery UiO-66(Zr), followed by flash freezing dry method. Their adsorption behaviors over As(V) were further explored and compared with a commercial arsenic removal material MN. The results indicate that, the maximum adsorption capacity of the microspheres (18.65 mg/g) is achieved at pH=7.0 with an initial As(V) concentration of 20 mg/L under static adsoption conditon. The results of breakthrough experiment show that the microspheres material containing 1.0 g UiO-66(Zr) can treat at least 1.2 L solution with the As(V) concentration of 100 μg/L, ensuring the effluent concentration below 10 μg/L. The overall performance of UiO-66(Zr)/SA microspheres was superior to MN. Considering the showcase of green and low-cost batch preparation of UiO-66(Zr) reported by the author’s team recently, the UiO-66(Zr)/SA microspheres can be used as a potential sorbent for the deep purification of As(V) in water.
Key words:  metal-organic framework    UiO-66(Zr)    sodium alginate    flash freezing granulation    arsenate(V)
发布日期:  2022-10-26
ZTFLH:  X703  
基金资助: 国家自然科学基金(21777119);上海市国际科技合作基金项目(18230742300;20230712200)
通讯作者:  *51n@tongji.edu.cn   
作者简介:  马慧,2021年6月于华东理工大学获得工学学士学位。现为同济大学环境科学与工程学院硕士研究生,在吴一楠副教授的指导下进行研究。目前主要研究领域为金属有机骨架整体材料的制备及环境应用。
吴一楠,同济大学环境科学与工程学院副教授、博士研究生导师。2012年毕业于同济大学环境科学与工程专业获博士学位。主要从事多层次孔结构材料的合成、金属有机骨架材料的绿色宏量制备及先进应用基础研究。在Angewandte Chemie-International EditionSmallChemical CommunicationsJournal of Hazardous Materials等国际期刊发表论文50余篇,主持多项国家及省部级科研项目,授权发明专利10项,参与制定国家标准1项。
引用本文:    
马慧, 方月, 吴一楠, 李风亭. UiO-66(Zr)/海藻酸钠复合材料的制备优化及净化水中As(V)的性能研究[J]. 材料导报, 2022, 36(20): 22050004-7.
MA Hui, FANG Yue, WU Yi’nan, LI Fengting. Synthesis Optimization of UiO-66(Zr)/Sodium Alginate Composite Microspheres and Its Removal of As(V) in Water. Materials Reports, 2022, 36(20): 22050004-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050004  或          http://www.mater-rep.com/CN/Y2022/V36/I20/22050004
1 Choong T S Y, Chuah T G, Robiah Y. Desalination, 2007,217(1-3),139.
2 Kay P. Area, 2011, 43(1), 118.
3 Wu W F, Xu Y, Shi D Q, et al. Environmental Science & Technology, 2015, 38(S1), 190(in Chinese).
吴万富, 徐艳, 史德强, 等. 环境科学与技术, 2015, 38(S1), 190.
4 Chen W Q, Shi Y L, Wu S L, et al. Journal of Cleaner Production, 2016, 139, 328.
5 GB5749-2006,生活饮用水卫生标准, 2006.
6 Gao X J, Wang F, Wang Q N. Industrial Water Treatment, 2012, 32(2), 10(in Chinese).
高小娟, 王璠, 汪启年. 工业水处理, 2012, 32(2), 10.
7 Basu A, Saha D, Saha R, et al. Research on Chemical Intermediates, 2014, 40(2), 447.
8 Walker M, Seiler R L, Meinert M. Science of the Total Environment, 2008, 389(2-3), 245.
9 Kumar P R, Chaudhari S, Khilar K C, et al. Chemosphere, 2004, 55(9), 1245.
10 Van Genuchten C M, Addy S E A, Pena J, et al. Environmental Science & Technology, 2012, 46(2), 986.
11 Giles D E, Mohapatra M, Issa T B, et al. Journal of Environmental Management, 2011, 92(12), 3011.
12 Zhu J, Pigna M, Cozzolino V, et al. Environmental Chemistry Letters, 2013, 11(3), 289.
13 Wang Y, Wang A, Xue Z, et al. Journal of Materials Chemistry A, 2021, 9(39), 22597.
14 Yu Y, Chen G, Guo J, et al. Materials Horizons, 2018, 5(6), 1137.
15 Han Y T, Liu M, Li K Y, et al. Chinese Journal of Applied Chemistry, 2016, 33(4), 367(in Chinese).
韩易潼, 刘民, 李克艳, 等. 应用化学, 2016, 33(4), 367.
16 Wang F X, Wang C C, Wang P, et al. Chinese Journal of Inorganic Chemistry, 2017, 33(5), 713(in Chinese).
王茀学, 王崇臣, 王鹏, 等. 无机化学学报, 2017, 33(5), 713.
17 Li S, Gu B H, Jiang Z Z, et al. New Chemical Materials, 2018, 46(11), 216(in Chinese).
李昭, 顾博翰, 蒋自展, 等. 化工新型材料, 2018, 46(11), 216.
18 Wang C, Liu X, Chen J P, et al. Scientific Reports, 2015, 5, 16613.
19 He X Y. The study of Zr(IV)-based metal-organic frameworks adsorption removal of As & Sb from contaminated water and detection of Hg. Master’s Thesis, Nanchang Hangkong University, China, 2016(in Chinese).
何兴羽. 锆基 MOFs 吸附去除水中砷、锑离子和汞离子检测性能研究. 硕士学位论文, 南昌航空大学, 2016.
20 Wang K, Tao X, Xu J, et al. Chemistry Letters, 2016, 45(12), 1365.
21 Rapti S, Pournara A, Sarma D, et al. Inorganic Chemistry Frontiers, 2016, 3(5), 635.
22 Stock N, Biswas S. Chemical Reviews, 2012, 112(2), 933.
23 Hu Q, Liu Y, Gu X, et al. Chemosphere, 2017, 181, 328.
24 Taddei M, Dau P V, Cohen S M, et al. Dalton Transactions, 2015, 44(31), 14019.
25 Cavka J H, Jakobsen S, Olsbye U, et al. Journal of the American Chemical Society, 2008, 130(42), 13850.
26 Ramsahye N A, Gao J, Jobic H, et al. Journal of Physical Chemistry C, 2014, 118(47), 27470.
27 Du F, Li L. Chemical Industry and Engineering Progress, 2015, 34(11), 3938(in Chinese).
杜峰, 李鹂. 化工进展, 2015, 34(11), 3938.
28 Samitsu S, Zhang R, Peng X, et al. Nature Communications, 2013, 4, 2653.
29 Li J, Wu Y N, Li Z, et al. Journal of Physical Chemistry C, 2014, 118(47), 27382.
30 Ma Y, Zheng Y M, Chen J P. Journal of Colloid and Interface Science, 2011, 354(2), 785.
31 Li F T, Wu Y N. US patent, US2021277029, 2021.
[1] 徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(z2): 285-293.
[2] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[3] 徐卫卫, 董梦悦, 赵静, 张鸣清, 底兰波, 张秀玲. Zr基MOFs在大气压等离子体中稳定性的研究[J]. 材料导报, 2020, 34(16): 16104-16108.
[4] 徐群娜, 仇瑞杰, 马建中. 聚合物基MOFs复合材料的制备及应用[J]. 材料导报, 2020, 34(15): 15153-15162.
[5] 初红涛, 姚冬, 陈嘉琪, 于淼. 金属有机骨架材料作为荧光探针的研究进展[J]. 材料导报, 2020, 34(13): 13114-13120.
[6] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[7] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[8] 王宗乾, 杨海伟. pH值对海藻酸钠溶液黏度及体系中氢键的影响规律[J]. 材料导报, 2019, 33(8): 1289-1292.
[9] 张晓静, 窦竞成, 苗龙强, 陈正阳, 沈炜炜. 海藻酸钠/POSS有机-无机杂化中空微囊的制备与性能[J]. 材料导报, 2019, 33(12): 2084-2088.
[10] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[11] 高保东, 钟红荣, 吴婷芳, 谭翠, 张岩, 徐水. 丝素/海藻酸钠膜韧性的优化及膜释药机理分析[J]. 《材料导报》期刊社, 2018, 32(7): 1197-1201.
[12] 董鸿,孙晓君,张欣,杨豆豆,王雪亮,张凤鸣. 纳米金属有机骨架ZIF-90的制备及载药性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 189-192.
[13] 毕玉水. 时间控制/pH依赖型盐酸黄连素结肠给药系统的控释性能[J]. 《材料导报》期刊社, 2018, 32(12): 1973-1977.
[14] 周玲玲, 汤立红, 宁平, 李凯, 包双友, 朱婷婷, 金旭, 张秀英. 金属有机骨架材料在气体吸附与分离中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 112-121.
[15] 王丽苹. 金属有机骨架材料在光催化反应中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 51-62.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed