Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22020147-8    https://doi.org/10.11896/cldb.22020147
  无机非金属及其复合材料 |
电磁吸波结构研究进展
刘雄飞1,2,*, 王壮1, 吴尧尧1, 王晓中3
1 河北工业大学土木与交通学院,建筑3D打印河北省工程研究中心,天津 300401
2 北京理工大学冲击环境材料技术重点实验室,北京 100081
3 河北中耐新材料科技有限公司,河北 廊坊 065601
A Review of Electromagnetic Wave Absorbing Structures
LIU Xiongfei1,2,*, WANG Zhuang1, WU Yaoyao1, WANG Xiaozhong3
1 School of Civil and Transportation Engineering, Engineering Research Center on Construction 3D Printing of Hebei, Hebei University of Technology, Tianjin 300401, China
2 National Key Laboratory of Science and Technology on Materials under Shock and Impact, Beijing Institute of Technology, Beijing 100081, China
3 Hebei Zhongnai New Material Technology Co., Ltd., Langfang 065601, Hebei, China
下载:  全 文 ( PDF ) ( 23298KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 医疗、信息、健康、军防安全等领域对电磁防护具有重大需求,优化电磁吸波结构可有效解决电磁参数可调范围小、吸收频带窄和吸波峰值低等问题。通过对电磁吸波材料进行多层、蜂窝和超结构优化设计,可满足电磁吸波材料“薄、轻、宽、强”的设计要求。多层、蜂窝和超结构是首先通过调控材料表层结构形式以提高其与自由空间的阻抗匹配特性,将更多电磁波引入到材料内部从而被吸波剂吸收,并结合材料层间界面、微单元结构空间的多重反射损耗作用,以及微单元结构的干涉、衍射和共振损耗作用,达到提高电磁吸波峰值和频带宽的目的。本文对近年来电磁吸波结构的设计方法、成果与应用进行概括总结,重点分析了电磁吸波结构对电磁波吸收损耗的提升作用机理,对电磁吸波结构的发展方向和未来热点进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘雄飞
王壮
吴尧尧
王晓中
关键词:  电磁辐射  电磁吸波材料  吸波结构  超材料  吸波剂    
Abstract: Medical, information, health, military security and other fields have great demand for electromagnetic radiation protection. Optimization of electromagnetic absorbing structure can effectively solve the problems of small adjustable range of electromagnetic parameters, narrow absorption band and low absorption peak value. The design requirements of ‘thin, light, wide and strong’ can be satisfied by optimizing multilayer, honeycomb and superstructure of electromagnetic absorbing materials. Multilayer, honeycomb and superstructure are the first methods to improve the impedance matching characteristics of the surface structure of the material to improve the impedance matching characteristics of the free space, and introduce more electromagnetic waves into the interior of the material to be absorbed by the wave absorber. Combined with the interlayer interface of the material, the multiple reflection loss of the micro-unit structure space, and the interference, diffraction and resonance loss of the micro-unit structure, the purpose of increasing the electromagnetic absorption wave peak value and frequency band width is achieved. This paper summarizes the design methods, achievements and applications of electromagnetic wave absorbing structures in recent years, focuses on analyzing the mechanism of electromagnetic wave absorbing structures to enhance the absorption loss of electromagnetic wave, and looks forward to the development direction and future hot spots of electromagnetic wave absorbing structures.
Key words:  electromagnetic radiation    electromagnetic absorbing material    absorbing structure    metamaterial    absorbing agent
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TU512.4  
基金资助: 国家自然科学基金(51908182;52278252); 河北省自然科学基金(E2020202043;E2019202484);冲击环境材料技术重点实验室基金(6142902200304)
通讯作者:  * 刘雄飞,博士,副教授,河北工业大学元光学者,土木与交通学院实验室副主任。2018年7月毕业于北京工业大学。河北省“巨人计划”创新团队成员,河北省电磁环境技术创新中心客座研究员,中国硅酸盐学会水泥基流变测试技术专家委员会委员。发表高水平论文30余篇,授权国家发明专利10余项。主持国家级、省部级自然科学基金项目3项,主持预研装备重点实验室基金军工项目1项。主要研究方向包括电磁防护材料与结构、3D打印、新材料与结构、结构加固材料与技术。liuxfking@foxmail.com   
引用本文:    
刘雄飞, 王壮, 吴尧尧, 王晓中. 电磁吸波结构研究进展[J]. 材料导报, 2023, 37(22): 22020147-8.
LIU Xiongfei, WANG Zhuang, WU Yaoyao, WANG Xiaozhong. A Review of Electromagnetic Wave Absorbing Structures. Materials Reports, 2023, 37(22): 22020147-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020147  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22020147
1 Yang X X, Li S L, Wei P, et al. Frontier Science, 2014, 8(1), 13(in Chinese).
杨新兴, 李世莲, 尉鹏, 等. 前沿科学, 2014, 8(1), 13.
2 Mao Q. Controlled preparation and microwave-absorbing property of dendritic and flake-like iron nitride materials. Master's Thesis, Shandong University, China, 2016 (in Chinese).
毛琼. 树枝状和片状氮化铁吸波剂的可控制备及吸波性能研究. 硕士学位论文, 山东大学, 2016.
3 Dang K. Study on microwave absorption properties of porous carbon fiber and its absorbing mechanism. Master's Thesis, Donghua University, China, 2017 (in Chinese).
党柯. 多孔碳纤维的吸波性能及吸波机理研究. 硕士学位论文, 东华大学, 2017.
4 Zhang L Z. Missiles and Space Vehicles, 1995(4), 48 (in Chinese).
张立中. 导弹与航天运载技术, 1995(4), 48.
5 Zhang X Z, Sun W. Cement and Concrete Composites, 2010, 32, 726.
6 Xie S, Ji Z J, Yang Y, et al. Materials Reports, 2016, 30(13), 63 (in Chinese).
解帅, 冀志江, 杨洋, 等. 材料导报, 2016, 30(13), 63.
7 Wang X T, Ma L F, Wang Y S, et al. Composite Structures, 2021, 266, 113798.
8 Zhang X Z, Sun W. Advanced Materials Research, 2009, 79-82, 1843.
9 Liu Y, Liu X, Wang X. Journal of Alloys and Compounds, 2014, 584, 249.
10 Cui X D, Liu H S, Guan H T, et al. Journal of Materials Science and Engineering, 2006, 24(5), 725 (in Chinese).
崔晓冬, 刘顺华, 管洪涛, 等. 材料科学与工程学报, 2006, 24(5), 725.
11 Hou C, Li T, Zhao T, et al. Materials and Design, 2012, 33, 413.
12 Xiang J, Zhang X H, Ye Q, et al. Chinese Journal of Inorganic Chemistry, 2014, 30(4), 845 (in Chinese).
向军, 张雄辉, 叶芹, 等. 无机化学学报, 2014, 30(4), 845.
13 Zhang X Z, Sun W. Procedia Engineering, 2012, 27, 348.
14 Gao X, Su J, Liu H W, et al. Chinese Journal of Power Sources, 2016, 40(7), 1467 (in Chinese).
高翔, 宿静, 刘宏伟, 等. 电源技术, 2016, 40(7), 1467.
15 Zhao H J, Gong Y X, Xing M D, et al. Aerospace Materials and Techno-logy, 2015, 45(4), 19 (in Chinese).
赵宏杰, 宫元勋, 邢孟达, 等. 宇航材料工艺, 2015, 45(4), 19.
16 Wang T, Wang P, Wang Y, et al. Materials and Design, 2016, 95, 486.
17 Choi J, Jung H T. Composite Structures, 2015, 122, 166.
18 Ji Z J, Xie S, Yang Y, et al. Journal of building Materials, 2016, 19(1), 185 (in Chinese).
冀志江, 解帅, 杨洋, 等. 建筑材料学报, 2016, 19(1), 185.
19 Meng X Q. Maneuverable Missile, 2005 (7), 34(in Chinese).
孟新强. 飞航导弹, 2005(7), 34.
20 Kong W, Yang K. Shanghai Building Materials, 2010(1), 14 (in Chinese).
孔巍, 杨凯. 上海建材, 2010(1), 14.
21 Chang Y P, Wei X L, Han X M, et al. Vacuum, 2022, 196, 110761.
22 Qiu K P, Wu C, Zhang W H. Scientia Sinica Physica, Mechanica and Astronomica, 2013, 43(9), 1057 (in Chinese).
邱克鹏, 吴晨, 张卫红. 中国科学:物理学 力学 天文学. 2013, 43(9), 1057.
23 He Y F, Gong R Z, Cao H, et al. Smart Materials and Structures, 2007, 16, 1501.
24 Wang H, Xiu X, Wang Y, et al. Composites Part B Engineering, 2020, 202(1), 108378.
25 Luo H, Chen F, Wang X, et al. Composites Part A, 2019, 119, 1.
26 Li W C, Xu L Y, Zhang X, et al. Composites Communications, 2020, 19, 182.
27 Zhao Y K, Bi S, Hou G L, et al. New Chemical Materials, 2021, 49(5), 93 (in Chinese).
赵彦凯, 毕松, 侯根良, 等. 化工新型材料, 2021, 49(5), 93.
28 Li C M, Wu S B, Wang J F, et al. Journal of Aeronautical Materials, 2019, 39(3), 94 (in Chinese).
礼嵩明, 吴思保, 王甲富, 等. 航空材料学报, 2019, 39(3), 94.
29 Li B. Preparation and electromagnetic wave absorbing properties of cement-based plate with 3D structures. Ph. D. Thesis, China General Research Institute of Building Materials Science, China, 2020 (in Chinese).
李彬. 3D结构水泥基吸波板制备与吸波性能研究. 博士学位论文. 中国建筑材料科学研究总院, 2020.
30 Zhu L C. Design and performance of gypsum based wave-absorbing materials with 3D periodic structure, Master's Thesis, China General Research Institute of Building Materials Science China, 2020 (in Chinese).
朱连诚. 石膏基3D周期结构吸波材料设计及性能研究. 硕士学位论文, 中国建筑材料科学研究总院, 2020.
31 Lv S P, Liu S H. Materials Science and Technology, 2007, 15(4), 572 (in Chinese).
吕述平, 刘顺华. 材料科学与工艺, 2007, 15(4), 572.
32 Zhang D N, Wang L J, Jia R, et al. Materials Science in Semiconductor Processing, 2022, 138, 106281.
33 Luo H, Zhang X J, Huang S X, et al. Infrared Physics and Technology, 2019, 99, 123.
34 Jung C F, Pacheco D A, Sporket F, et al. Waste Management, 2021, 119(1), 91.
35 Deng W Q, Mo J J. Journal of Magnetic Materials and Devices, 2021, 52(3), 52 (in Chinese).
邓文谦, 莫锦军. 磁性材料及器件, 2021, 52(3), 52.
36 Zhou Q, Yin X, Ye F, et al. Materials and Design, 2017, 123, 46.
37 Li W, Li C, Lin L, et al. Journal of Alloys and Compounds, 2019, 781, 883.
38 Mu W D, Xu Y P, Sheng D J. Materials Reports, 2021, 35(Z2), 115 (in Chinese).
穆武第, 许永平, 盛德军. 材料导报, 2021, 35(Z2), 115.
39 Gao X S, Han B G, Ou J P. Journal of Functional Materials, 2006, 37(10), 1683 (in Chinese).
高雪松, 韩宝国, 欧进萍. 功能材料, 2006, 37(10), 1683.
40 Han M Y, Zhou M, Wu Y, et al. Journal of Alloys and Compounds, 2022, 902(5), 163792.
41 Sun S B, Huang S M, Jia Z Y, et al. Journal of Beijing University of Technology, 2018, 44(4), 611 (in Chinese).
孙诗兵, 黄石明, 贾治勇, 等. 北京工业大学学报, 2018, 44(4), 611.
42 Yu N, Genevet P, Kats M A, et al. Science, 2011, 334, 333.
43 Li Y F, Zhang J Q, Qu S B, et al. Acta Physica Sinica, 2014, 63(8), 153 (in Chinese).
李勇峰, 张介秋, 屈绍波, 等. 物理学报, 2014, 63(8), 153.
44 Wu C J, Cheng Y Z, Wang W Y, et al. Acta Physica Sinica, 2015, 64(16), 164102.
45 Ge C C. Design of phase gradient metasurface and study of RCS reduction. Master's Thesis, Huazhong University of Science and Technology, China, 2018 (in Chinese).
葛晨辰. 相位梯度超表面设计与RCS缩减研究. 硕士学位论文, 华中科技大学, 2018.
46 Guo W L, Wang G M, Li H P, et al. Journal of Microwaves, 2016, 32(3), 51 (in Chinese).
郭文龙, 王光明, 李海鹏, 等. 微波学报, 2016, 32(3), 51.
47 Fan Y, Qu S B, Wang J F, et al. Acta Physica Sinica, 2015, 64(18), 242 (in Chinese).
范亚, 屈绍波, 王甲富, 等. 物理学报, 2015, 64(18), 242.
48 Yue H. Research and design of electromagnetic wave regulation with phase gradient metasurface. Master's Thesis, Xidian University, China, 2019 (in Chinese).
岳昊. 相位梯度超表面对电磁波调控的研究与设计. 硕士学位论文, 西安电子科技大学, 2019.
49 Dong Y. Research on electromagnetic stealth based on phase gradient metasurface. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020 (in Chinese).
董迎. 基于相位梯度超表面的电磁隐身研究. 硕士学位论文, 南京航空航天大学, 2020.
50 Li C, Chen M. Research and Progress of SSE, 2020, 40(2), 127 (in Chinese).
李聪, 陈明. 固体电子学研究与进展, 2020, 40(2), 127.
51 Jiang L, Fang B, Yan Z, et al. Optics Communications, 2020, 471, 125.
52 Meng X Q, Zhu X B. Journal of Projectiles, Missiles and Guildance, 1999, 10(3), 59 (in Chinese).
孟新强, 朱绪宝. 弹箭与制导学报, 1999, 10(3), 59.
53 Cao H. Aerospace Material Technology, 1993(4), 34 (in Chinese).
曹辉. 宇航材料工艺, 1993(4), 34.
54 Zhang X, Sun W. Magazine of Concrete Research, 2011, 63(3), 157.
[1] 孟真, 李广德, 崔光振, 王义, 刘东青, 程海峰. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 22040001-8.
[2] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[3] 吴雷, 吴红艳, 邱丝雯, 周军, 张秋利, 田玮. 有机污染土壤微波修复技术中吸波剂的研究进展[J]. 材料导报, 2023, 37(19): 22020006-9.
[4] 师甜甜, 杜立飞, 张海锋, 田闰博. 水基吸波超材料的研究进展[J]. 材料导报, 2023, 37(18): 21120076-7.
[5] 陈孟州, 刘顾, 汪刘应, 葛超群, 许可俊, 王伟超, 王龙. 超材料吸波体及其3D打印制造研究进展[J]. 材料导报, 2023, 37(16): 21100117-7.
[6] 杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
[7] 宋友婷, 黄聪颖, 封哲宇, 时胜圆, 李敏华, 董建峰. 吸透一体超材料研究进展[J]. 材料导报, 2022, 36(11): 21060182-9.
[8] 黄晓寒, 程华, 郑子云, 牛梓蓉, 张左群. 含铁氧体陶粒骨料电磁波损耗模型与性能研究[J]. 材料导报, 2021, 35(22): 22027-22032.
[9] 孙磊, 孙俊, 高晓梅, 杨彪, 张晶, 周瑶. 基于超材料的微波宽带完美吸波体设计[J]. 材料导报, 2021, 35(12): 12014-12019.
[10] 夏进军, 李洁, 张雨萌, 张育新. 折纸结构及其特性的工程应用策略[J]. 材料导报, 2021, 35(11): 11196-11207.
[11] 方全海, 吴良沛, 董建峰. 多功能超表面的光传输特性研究进展[J]. 材料导报, 2020, 34(9): 9048-9054.
[12] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[13] 赵亚娟, 李宝毅, 马晨, 王东红, 王富生. 基于超材料的多频段微带滤波器[J]. 材料导报, 2019, 33(Z2): 70-72.
[14] 孙明娟, 刘光烜, 张淑媛, 李雪. 耐腐蚀吸波超材料的制备及应用[J]. 材料导报, 2019, 33(Z2): 613-616.
[15] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed