Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21030226-9    https://doi.org/10.11896/cldb.21030226
  高分子与聚合物基复合材料 |
胶原基生物材料制备与应用研究进展
何晓棠1,2, 但晔3, 陈一宁1,4, 王云兵4, 胡晓兵3, 李正军1,2, 但卫华1,2,*
1 四川大学轻工科学与工程学院,皮革化学与工程教育部重点实验室,成都 610065
2 四川大学生物医学工程技术研究中心,成都 610065
3 四川大学机械工程学院,成都 610065
4 国家生物医学材料工程技术研究中心,成都 610065
Research Progress in Preparation and Application of Advanced Collagen-based Biomaterials
HE Xiaotang1,2, DAN Ye3, CHEN Yining1,4, WANG Yunbing4, HU Xiaobing3, LI Zhengjun1,2, DAN Weihua1,2,*
1 Key Laboratory of Leather Chemistry and Engineering of Ministry of Education,College of Biomass Science and Engineering, Sichuan University,Chengdu 610065, China
2 Research Center of Biomedicine Engineering of Sichuan University,Chengdu 610065, China
3 School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
4 National Engineering Research Center for Biomaterials, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 4199KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 胶原因具有良好的亲水性、柔韧性和趋化性、生物相容性、生物降解性,被认为是改善组织再生最重要的生物材料之一,并广泛应用于食品、化妆品以及再生医学领域。但是,在提取过程中,胶原的结构和自然交联键会遭到破坏,导致其机械强度、热稳定性和抗酶解能力都低于自然状态。受到天然胶原在组织重塑和修复过程中自然交联的启发,研究人员通过引入外源性交联(化学、物理和生物)来优化胶原基材料的机械强度和稳定性。
目前,外源性化学、物理或生物交联已被用于修饰胶原的分子结构,通过这些方法制备的胶原基支架材料的刚度、抗张强度和压缩模量都明显提高,但是材料的延展性降低。这些方法主要是通过限制胶原三螺旋结构分子间α链的自由度,防止胶原微纤维排列的破坏,从而提高胶原的热稳定性和机械强度。另外,通过分子间交联掩盖胶原的酶切割位点,能够提高胶原对酶促降解的抵抗力。但是这些方法仍然有一些缺陷,如存在细胞毒性和降低胶原的活性等。研究者们制备了不同物理结构的胶原基材料(脱细胞基质、海绵、水凝胶、自组装纤维、膜、管和多孔球等),以更好地促进不同组织或器官的再生。因此,了解胶原基材料的交联方法和制备技术进展,对开发新型的胶原基生物支架材料至关重要。
本文详细总结了制备胶原基材料的外源性交联方法及其优缺点,归纳了不同物理结构的胶原基材料制备方法以及它们在组织再生方面应用的研究进展,并对胶原基材料在再生领域面临的挑战以及未来的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何晓棠
但晔
陈一宁
王云兵
胡晓兵
李正军
但卫华
关键词:  胶原  交联  生物材料  组织再生    
Abstract: Collagen is considered as an appealing biomaterial with idealistic hydrophilicity, low antigenicity, flexibility, inherent chemotactic activity, biocompatibility and biodegradability. Collagens are widely used in the food, cosmetics and biomedical industries. However, the mechanical properties, thermal stability and resistance to enzymatic degradatio are depleted during extraction, resulting in inferiorities compared to its natural state. Inspired by natural cross-linking of collagen during tissue remodeling and repair, researchers have developed exogenous chemical, physical and biological cross-linking methods to optimize the stability of collagen-based biomaterials.
The stiffness, tensile strength and compressive modulus of collagen-based scaffolds prepared using cross-linking methods have yielded significant improvements, but the flexibility of these collagen materials is lacking. Current methods aim to prevent the destruction of collagen microfiber arrangement by limiting the degrees of freedom of the α-chain between the molecules of the collagen triple helix, thus promoting thermal stability and mechanical strength. In addition, resistance to enzymatic degradation can be improved by masking the enzymatic cleavage sites of collagen using intermolecular crosslinking. However, deficiencies in these methodologies include increased cytotoxicity and decreased bioactivity. To satisfy the requirements of tissue and organ regeneration, researchers have prepared collagen materials in different physical forms (acellular matrix, sponges, hydrogels, self-assembled fibers, membranes, tubes, porous spheres, etc.). Therefore, it is imperative to understand the cross-lin-king methods and preparation technology of collagen based materials for developing new collagen based scaffold materials.
Here, we introduced exogenous crosslinking methods in the fabrication of collagen-based biomaterials and their associated advantages and disadvantages, the preparation of collagen-based materials with different physical structures, the progress and challenges in utilizing collagen biomaterials for tissue regeneration, and the future challenges and developmental prospects of collagen-based biomaterials in regenerative medicine.
Key words:  collagen    cross-linking    biomaterial    tissue regeneration
发布日期:  2023-02-08
ZTFLH:  R318.08  
基金资助: 中央高校基本科研业务费资助项目(20826041C4159)
通讯作者:  *但卫华,博士,教授,博士研究生导师,享受国务院政府特殊津贴专家,四川省学术技术带头人。1982年1月本科毕业于成都科技大学高分子材料系皮革专业,1999年在四川联合大学皮革工程系获得工学博士学位,现任四川大学轻工科学与工程学院教授、四川大学生物医学工程技术研究中心医用生物质材料研究室负责人。先后在国内外专业刊物上发表论文500余篇,获国家专利授权60余项,出版学术专著及教材8部。主要研究方向为生物质化学与工程、生物医学材料、绿色皮革化工材料以及功能复合材料等。   
作者简介:  何晓棠,2007年毕业于内蒙古农业大学,获得学士学位。2010年毕业于华南农业大学,获得硕士学位。现为四川大学轻工科学与工程学院博士研究生,在但卫华教授的指导下进行研究。目前主要研究领域为生物质医用材料。
引用本文:    
何晓棠, 但晔, 陈一宁, 王云兵, 胡晓兵, 李正军, 但卫华. 胶原基生物材料制备与应用研究进展[J]. 材料导报, 2023, 37(2): 21030226-9.
HE Xiaotang, DAN Ye, CHEN Yining, WANG Yunbing, HU Xiaobing, LI Zhengjun, DAN Weihua. Research Progress in Preparation and Application of Advanced Collagen-based Biomaterials. Materials Reports, 2023, 37(2): 21030226-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030226  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21030226
1 Charulatha V, Rajaram A. Biomaterials, 2003, 24(5), 759.
2 Delgado L M, Pandit A, Zeugolis D I, et al. Expert Review of Medical Devices, 2014, 11(3), 305.
3 Di Stefano V, Torsello B, Bianchi C, et al. American Journal of Pathology, 2016, 186, 2473.
4 Grossman M, Ben-Chetrit N, Zhuravlev A, et al. Cancer Research, 2016, 76(14), 4249.
5 Bailey A J, Light N D, Atkins E. Nature, 1980, 288(5789), 408.
6 Dias J, Diakonis V F, Lorenzo M, et al. Experimental Eye Research, 2015, 138, 1.
7 Lakra R, Kiran M S, Sai K P. Biomedical Materials, 2015, 10(6), 065015.
8 Xian X, Wen J, Liu Y N, et al. Materials Science & Engineering C-Materials for Biogical Applications, 2015, 57, 189.
9 Martinez A, Blanco M D, Davidenko N, et al. Carbohydrate Polymers Scientific & Technological Aspects of Industrially Important Polysaccharides, 2015, 132, 606.
10 Chen Y C, Chen M, Gaffney E A, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 138.
11 Kishore V, Iyer R, Frandsen A, et al. Biomedical Materials, 2016, 11(5), 055008.
12 Harrington W F, Hippel P H. Advances in Protein Chemistry, 1961, 16, 1.
13 Wu X, Liu A, Wang W, et al. International Journal of Biological Macromolecules, 2018, 109, 1319.
14 Jaikumar D, Baskaran B, Vaidyanathan V G. International Journal of Biological Macromolecules, 2016, 96, 429.
15 Aldahlawi N H, Hayes S, O'Brart D P S, et al. Investigative Ophthalmology & Visual Science, 2016, 57(6), 2400.
16 Gu L S, Shan T T, Ma Y X, et al. Trends in Biotechnology, 2018, 37(5), 464.
17 Sorushanova A, Delgado L M, Wu Z N, et al. Advanced Materials, 2019, 31, 1801651.
18 Nair M, Best S M, Cameron R E. Applied Sciences, 2020, 10, 6911.
19 Kramer D B, Shuai X, Kesselheim A S. New England Journal of Medicine, 2012, 366(9), 848.
20 Zeugolis D I, Paul G R, Attenburrow G. Journal of Biomedical Materials Research Part A, 2009, 89A(4), 895.
21 Rafat M, Li F, Fagerholm P, et al. Biomaterials, 2008, 29(29), 3960.
22 Ko C S, Huang J P, Huang C W, et al. Journal of Bioscience and Bioengineering, 2009, 107( 2), 177.
23 Chapman J A, Tzaphlidou M, Meek K M, et al. Electron Microscopy Reviews, 1990, 3(1), 143.
24 Gough J E, Scotchford C A, Downes S. Journal of Biomedical Materials Research, 2002, 61(1), 121.
25 Vasudev S C, Chandy T. Journal of Biomedical Materials Research, 2015, 35(3), 357.
26 Delgado L M, Bayon Y, Pandit A, et al. Tissue Engineering Part B: Reviews, 2015, 21(3), 298.
27 Brown B N, Londono R, Tottey S, et al. Acta Biomaterialia, 2012, 8(7), 978.
28 Duan L, Yuan Q, Xiang H, et al. Journal of Biomaterials Applications, 2018, 32(7), 862.
29 Hu Y, Liu L, Gu Z, et al. Carbohydrate Polymers, 2014, 102, 324.
30 Du T M, Chen Z H, Li H, et al. International Journal of Biological Macromolecules, 2016, 82, 580.
31 Kozlowska J, Sionkowska A. International Journal of Biological Macromolecules, 2015, 74, 397.
32 Bax D V, Davidenko N, Gullberg D, et al. Acta Biomaterialia, 2017, 49, 218.
33 Nagaoka H, Nagaoka H, Walter R, et al. Biomed Research International, 2014, 2014, 702821.
34 Hiraishi N, Maruno T, Tochio N, et al. Dental Materials, 2017, 33(1), 33.
35 Mao Z Q, Liu Z R. China Leather, DOI: 10. 13536/j. cnki. issn1001-6813. 2020-011-001(in Chinese).
毛朝琼, 刘志荣. 中国皮革, DOI: 10. 13536/j. cnki. issn1001-6813. 2020-011-001.
36 Tan H, Wu B, Lin W, et al. Carbohydrate Polymers, 2015, 129, 17.
37 Tian Z H, He J X, Wang Y. China Leather, DOI:10. 13536/j. cnki. issn1001-6813. 2020-011-000(in Chinese).
田振华, 何静瑄, 王颖. 中国皮革, DOI:10. 13536/j. cnki. issn1001-6813. 2020-011-000.
38 Liu W, Liu M, Deng T, et al. Journal of Oral Science Research, 2020, 36(4), 372 (in Chinese).
刘雯, 刘敏, 邓婷, 等. 口腔医学研究, 2020, 36(4), 372.
39 Kong W J, Gu X H, Sun J. Chinese Journal of Stomatology, 2020, 55(2), 135 (in Chinese).
孔维婧, 顾新华, 孙健. 中华口腔医学杂志, 2020, 55(2), 135.
40 Ward J, Kelly J, Wang W, et al. Biomacromolecules, 2010, 11(11), 3093.
41 Delgado L M, Fuller K, Zeugolis D I. Tissue Engineering Part A, 2017, 23(19-20), 1064.
42 Nakada A, Shigeno K, Sato T, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017, 105(8), 2301.
43 Krishnakumar G S, Gostynska N, Dapporto M, et al. International Journal of Biological Macromolecules, 2018, 106, 739.
44 Sionkowska A, Wess T. International Journal of Biological Macromolecules, 2004, 34(1-2), 9.
45 Ziaei M, Barsam A, Shamie N, et al. Journal of Cataract and Refractive Surgery, 2015, 41(4), 842.
46 Davidenko N, Bax D V, Schuster C F, et al. Journal of Materials Science Materials in Medicine, DOI: 10. 1007/s10856-015-5627-8.
47 Paul R G, Bailey A J. The Scientific World Journal, 2014, 3(3), 138.
48 Lee J H, Kim H G, Lee W J. Biomaterials, 2015, 44, 195.
49 Choi Y, Kim H J, Min K S. Restorative Dentistry & Endodontics, 2016, 41(4), 296.
50 Heck T, Faccio G, Richter M, et al. Applied Microbiology & Biotechnology, 2013, 97(2), 461.
51 Cai X Q, Hu S X, Yu Y L, et al. Carbohydrate Polymers, 2018, 201, 201.
52 Wu X, Liu Y, Liu A, et al. International Journal of Biological Macromolecules, 2017, 98, 292.
53 Damink L, Dijkstra P J, Luyn M, et al. Journal of Materials Science Materials in Medicine, 1995, 6(8), 460.
54 Haugh M G, Murphy C M, McKiernan R C, et al. Tissue Engineering Part A, 2011, 17, 1201.
55 Takigawa T, Endo Y. Journal of Occupational Health, 2006, 48, 75.
56 Grover C N, Gwynne J H, Pugh N, et al. Acta Biomaterialia, 2012, 8, 3080.
57 Bax D V, Davidenko N, Gullberg D, et al. Acta Biomaterialia, 2017, 49, 218.
58 Olde D L, Dijkstra P, Van Luyn M, et al. Biomaterials, 1996, 17, 765.
59 Shepherd J, Ghose S, Kew S, et al. Journal of Biomedical Materials Research Part A, 2013, 101, 176.
60 Zhang X, Chen X, Yang T, et al. Cell Tissue Bank. 2014, 15, 531.
61 Tambe N, Di J, Zhang Z, et al. Journal of Biomedical Materials Research Part B, 2015, 103, 1188.
62 Singh H, Racadio J, Brown M, et al. The Spine Journal, 2017, 17(10), S206.
63 Davidenko N, Bax D V, Schuster C F, et al. Journal of Materials Science-Materials in Medicine, 2016, 27, 14.
64 Kato Y, Nishikawa T, Kawakishi S. Photochemistry and Photobiology, 1995, 61, 367.
65 Sufi A R, Soundaram M, Gohil N, et al. Journal of Ophthalmic and Vision Research, 2021, 16(3), 325.
66 Chau D Y, Collighan R J, Verderio E A, et al. Biomaterials 2005, 26, 6518.
67 Li Y, He Q, Hu X, et al. Journal of Biomaterials Science Polymer Edition, 2017, 28(7), 629.
68 Ali F, Zhu H, Samer A, et al. Investigative Ophthalmology & Visual Science, 2016, 57(15), 6610.
69 Bersanetti P A, Bueno T, Morandim-Giannetti A, et al. Current Eye Research, DOI:10. 1080/02713683. 2016. 1214970.
70 Priyadarshani P, Li Y C, Yang S Y, et al. Journal of Biomedical Materials Research Part A, 2016, 104(2), 419.
71 Hadidi P, Cissell D D, Hu J C, et al. Acta Biomaterialia, 2017, 64, 29.
72 Zhou X, Tao Y, Chen E, et al. Journal of Biomedical Materials Research Part A, 2018, 106(5), 1258.
73 Wang Y, Wang X T, Shang J, et al. European Spine Journal, 2017, 26(3), 884.
74 Pawelec K M, Confalonieri D, Ehlicke F, et al. Journal of Biomedical Materials Research Part A, 2017, 105(7), 1856.
75 Lee J C, Pereira C T, Ren X, et al. Journal of Craniofacial Surgery, 2015, 26(6), 1992.
76 Siriwardane M L, Derosa K, Collins G, et al. Biofabrication, 2014, 6(1), 015012.
77 Meng Q, Chong S. Experimental Dermatology, DOI:10. 1111/exd. 13725.
78 Lu Z, Liu S, Le Y, et al. Biomaterials, 2019, 218, 119190.
79 Yan L P, Wang Y J, Ren L, et al. Journal of Biomedical Materials Research Part A, 2010, 95(2), 465.
80 Gattazzo F, De Maria C, Rimessi A, et al. Journal of Biomedical Materials Research Part B , 2018, 106(8), 2763.
81 Lin K, Zhang D W, Macedo M H, et al. Advanced Functional Materials, 2018, 29(3), 1804943.
82 Xu Y, Cui W, Zhang Y, et al. Advanced Healthcare Materials, 2017, 6(13), 1601457.
83 Zitnay J L, Reese S P, Tran G, et al. Acta Biomaterialia, 2018, 65, 76.
84 Puetzer J L, Koo E, Bonassar L J. Journal of Biomechanics, 2015, 48(8), 1436.
85 Yang L, Fitié C F C, Werf K, et al. Biomaterials, 2008, 29(8), 955.
86 Parenteau-Bareil R, Gauvin R, Berthod F. Materials, 2010, 3(3), 1863.
87 Chen F M, Liu X. Progress in Polymer Science, 2016, 53, 86.
88 Badylak S F, Taylor D, Uygun K. Annual Review of Biomedical Engineering, 2011, 13, 27.
89 Hodonsky C, Mundada L, Wang S, et al. The Annals of Thoracic Surgery, 2015, 99(2), 611.
90 Hu Y, Dan W H, Xiong S B, et al. Acta Biomaterialia, 2017, 47, 135.
91 Lia B, Liu Y H, Zhou Y S, et al. Materials Letters, 2020, 274, 127926.
92 Brown B N, Londono R, Tottey S, et al. Acta Biomaterialia, 2012, 8(7), 978.
93 Pourjavadi A, Kurdtabar M. Polymer International, 2010, 59(1), 36.
94 Motte S, Kaufman L J. Biopolymers, 2013, 99(1), 35.
95 Stegemann J P, Nerem R M. Experimental Cell Research, 2003, 283(2), 146.
96 Fontana G, Thomas D, Collin E, et al. Advanced Healthcare Materials, 2015, 3(12), 2012.
97 Moriarty N, Pandit A, Dowd E. Scientific Reports, 2017, 7(1), 16033.
98 Young R G, Butler D L, Weber W, et al. Journal of Orthopaedic Research, 1998, 16(4), 406.
99 Zscharnack M, Hepp P, Richter R, et al. American Journal of Sports Medicine, 2010, 38(9), 1857.
100 Falanga V. Lancet, 2005, 366(9498), 1736.
101 Veves V, Falanga V, Armstrong D G, et al. Diabetes Care, 2001, 24(2), 290.
102 Griffiths M, Ojeh N, Livingstone R, et al. Tissue Engineering, 2004, 10(7-8), 1180.
103 Kim B S, Kim J S, Lee J. Journal of Biomedical Materials Research Part A, 2013, 101(9), 2661.
104 Quinlan E, Thompson E M, Matsiko A, et al. Journal of Controlled Release, 2015, 21, S250.
105 Monjo M, Ruben M, Wohlfahrt J C, et al. Acta Biomaterialia, 2010, 6(4), 1405.
106 Sanami M, Sweeney I, Shtein Z, et al. Journal of Biomedical Materials Research PartB, 2016, 104(5), 914.
107 Enea D, Gwynne J, Kew S. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA, 2013, 21(8), 1783.
108 Yang S, Shi X X, Li X M, et al. Biomaterials, 2019, 207, 61.
109 Marino A A, Becker R O. Calcified Tissue International, 1969, 4(1), 330.
110 Abu-Rub M T, Billiar K L, Es M V, et al. Soft Matter, 2011, 7(6), 2770.
111 Gurkan U A, Cheng X, Kishore V, et al. Journal of Biomedical Materials Research Part A, 2010, 94A(4), 1070.
112 Bose S, Li S, Mele E, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111, 103983.
113 Lu J T, Lee C J, Bent S F, et al. Biomaterials, 2007, 28(8), 1486.
114 Liu Y, Ren L, Wang Y. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2013, 33(1), 196.
115 Liu Y, Ren L, Long K, et al. Acta Biomaterialia, 2014, 10(1), 289.
116 Majumdar S, Wang X, Sommerfeld S D, et al. Advanced Functional Materials, 2018, 28(41), 1804076.
117 Eguchi Y, Ogiue-Ikeda M, Ueno S. Neuroscience Letters, 2003, 351(2), 130.
118 Zorlutuna P, Rong Z, Vadgama P, et al. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2(6), 373.
119 Shi X, Wang S, Chen X, et al. Molecular Pharmaceutics, 2006, 3(2), 144.
120 Sehgal P K, Srinivasan A. Expert Opinion on Drug Delivery, 2009, 6(7), 687.
121 Browne S, Fontana G, Rodriguez B J, et al. Molecular Pharmaceutics, 2012, 9(11), 3099.
122 Helary C, Browne S, Mathew A, et al. Acta Biomaterialia, 2012, 8(12), 4208.
123 Kraskiewicz H, Breen B, Sargeant T, et al. ACS Chemical Neuroscience, 2013, 4(9), 1297.
124 Likhitpanichkul M, Kim Y, Torre O M, et al. Other, 2015, 15(9), 2045.
[1] 闫星雨, 但年华, 陈一宁, 但卫华, 李正军. 胶原基复合止血材料的研究进展及展望[J]. 材料导报, 2023, 37(5): 21030008-9.
[2] 戴飞亮, 付子恩, 蒋金博, 涂伟萍. 有机硅(碳)嵌段共聚物的合成及其应用研究进展[J]. 材料导报, 2022, 36(9): 20070144-12.
[3] 李玉妍, 杨忠鑫, 陈南春, 莫胜鹏, 王秀丽, 解庆林. Zn2+交联海藻酸钠抑菌缓释微球制备及其抑菌效应[J]. 材料导报, 2022, 36(7): 21020040-7.
[4] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[5] 刘佳, 牛家嵘, 金欣, 朱正涛, 王闻宇. 淀粉类可吸收止血材料的研究进展[J]. 材料导报, 2022, 36(3): 21100136-8.
[6] 许秀娟, 杨凤怡, 黄皖卿, 祝雨虹, 梁筱峥, 刘潇钦, 晏梅, 周航, 李晓洲, 赵晚露, 艾华. 立足行业需求,助力生物材料创新发展[J]. 材料导报, 2022, 36(3): 22010204-7.
[7] 李子晗, 赵超, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 20080182-8.
[8] 文轩, 胡志豪, 汪苏平, 张云, 汪源. 交联型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2021, 35(z2): 172-175.
[9] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[10] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[11] 张克松, 石伟, 刘赛, 杨昶, 周心宇. 联苯基交联聚异腈的亚硝酸根电化学响应行为[J]. 材料导报, 2021, 35(12): 12175-12180.
[12] 邓雨希, 关鹏飞, 左迎峰, 吴义强, 袁光明, 李贤军. 基于互穿交联结构的PVA-硅酸钠杂化改性杨木的制备与性能[J]. 材料导报, 2021, 35(10): 10221-10226.
[13] 范治平, 程萍, 张德蒙, 王文丽, 韩军. 天然高分子基刺激响应性智能水凝胶研究进展[J]. 材料导报, 2020, 34(21): 21012-21025.
[14] 何亭睿, 王一平, 李雄杰, 陈朋, 胡悫睿, 杨颖, 宁洪龙. 可交联型P(VDF-CTFE-DB)/PMN-PT-Sm纳米复合薄膜的制备及介电和储能性能[J]. 材料导报, 2020, 34(18): 18152-18158.
[15] 李学锋, 王慧, 龙世军, 黄以万, 李海燕. 离子双交联海藻酸钠/聚(丙烯酰胺-co-丙烯酸)高强度水凝胶的研究[J]. 材料导报, 2020, 34(16): 16149-16154.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed