Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20100242-8    https://doi.org/10.11896/cldb.20100242
  高分子与聚合物基复合材料 |
金属-有机杂化材料用于有机磷毒剂检测与洗消的研究进展
梁妃攀1,†, 吴思1,†, 夏宇正1, 石淑先1,*, 聂志勇2,*
1 北京化工大学材料科学与工程学院,北京 100029
2 军事医学研究院毒物药物研究所,北京 100850
Research Progress of Metal-Organic Hybrid Materials for Detection and Decontamination of Organophosphate Agents
LIANG Feipan1,†, WU Si1,†, XIA Yuzheng1, SHI Shuxian1,*, NIE Zhiyong2,*
1 College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2 Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
下载:  全 文 ( PDF ) ( 2442KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 神经性毒剂和大部分有机磷酸酯农药均属于有机磷毒剂,可抑制人体内乙酰胆碱酯酶活性,导致过量乙酰胆碱在体内的积累,从而引发一系列健康问题甚至死亡。传统大型仪器对有机磷毒剂的检测准确度高,但检测周期长、样品处理复杂且需要专业仪器和技术人员。如何进行快捷检测、鉴定并及时对有机磷毒剂进行洗消,对中毒的提早防治和生命的挽救具有重要的现实意义。本文总结了基于贵金属纳米粒子与有机化合物的复合以及金属有机框架材料这两种金属-有机杂化材料对有机磷毒剂的检测与洗消,综述了可在短时间内直接通过颜色变化或荧光变化对有机磷毒剂进行快捷检测的比色法和荧光法的研究进展,总结了利用金属有机框架材料实现对有机磷毒剂检测与吸附降解的效果,并对未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁妃攀
吴思
夏宇正
石淑先
聂志勇
关键词:  神经性毒剂  有机磷酸酯农药  金属有机杂化材料  检测  洗消    
Abstract: Nerve agents and most organophosphate pesticides belong to organophosphate agent, which can inhibit acetylcholinesterase activity in the human body, leading to the accumulation of excessive acetylcholine in the body, causing a series of health problems and even death. Although the detection of organophosphorus agent by traditional large-scale instruments has high accuracy, the detection should spend more time, sample processing is complicated, and professional instruments and technical personnel are required. How to quickly detect, identify and decontaminate organophosphorus agent in a timely manner has important practical significance for the early prevention and treatment of poisoning, even saving lives. This paper summarizes the detection and decontamination of organophosphorus agents by two metal-organic hybrid materials based on the compounds of precious metal nanoparticles and organic chemicals, metal-organic framework materials. The progress of fluorescence and colorimetric methods used to detect organophosphorus agents directly by color or fluorescence change quickly in a short time. The effect of adsorption and degradation of organophosphorus poisons caused by metal-organic framework materials, and the prospect of future development in this field are introduced.
Key words:  nerve agents    organophosphorus pesticides    metal-organic hybrid materials    detection    decontamination
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TB33  
基金资助: 军内科研项目
通讯作者:  * shisx@mail.buct.edu.cn;niezhiyong2008@163.com   
作者简介:  梁妃攀,北京化工大学硕士研究生,2019年毕业于北京化工大学,获工学学士学位。目前主要研究方向为金属有机框架材料对有机磷毒剂的检测与洗消。
吴思,北京化工大学硕士研究生,2018年起于北京化工大学材料科学与工程学院攻读硕士学位,目前主要研究方向为金属纳米材料-聚合物复合材料及其在催化方向的应用。
石淑先,北京化工大学材料科学与工程学院副教授、硕士研究生导师。先后于1995年、2000年和2007年分别于北京化工大学获得学士、硕士和博士学位。先后承担或参与多项国家部委及企事业项目。迄今发表文章百余篇,主编/参编多部专业书籍。目前主要研究方向是功能涂层/表面、刺激响应型高分子材料、聚合物杂化材料的制备及应用。
聂志勇,副研究员,于2011年在军事医学科学院获药物分析学博士学位。近年来在Food Chemistry、Talanta、《中国科学》等国内外期刊发表论文30余篇,参与专著及教材编写多部,获科技奖2项,因抗震救灾、应急救援等荣立个人三等功共3次。目前主要从事毒剂毒物检测鉴定、吸入毒理分析及中毒对抗措施研究。
†共同第一作者
引用本文:    
梁妃攀, 吴思, 夏宇正, 石淑先, 聂志勇. 金属-有机杂化材料用于有机磷毒剂检测与洗消的研究进展[J]. 材料导报, 2022, 36(13): 20100242-8.
LIANG Feipan, WU Si, XIA Yuzheng, SHI Shuxian, NIE Zhiyong. Research Progress of Metal-Organic Hybrid Materials for Detection and Decontamination of Organophosphate Agents. Materials Reports, 2022, 36(13): 20100242-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100242  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20100242
1 Tsyshevsky R, Holdren S, Eichhorn B W, et al. The Journal of Physical Chemistry C, 2019, 123(43), 26432.
2 Sambrook M R, Gass I A, Cragg P J. Supramolecular Chemistry, 2017, 30(3), 206.
3 Song S G, Ha S, Cho H J, et al. ACS Applied Nano Materials, 2018, 2(1), 109.
4 Yu C X, Hu F L, Song J G, et al. Sensors and Actuators B: Chemical, 2020, 310, 127819.
5 Wei Z H, Chen D S, Guo Z F, et al. Inorganic Chemistry, 2020, 59(8), 5386.
6 Pundir C S, Malik A. Biosenors Bioelectronics, 2019, 140, 111348.
7 Liu G H, Huang T T, Yu J X. Journal of Instrumental Analysis, 2018, 37(9), 1096.
8 Cao Y, Wang L N, Shen C, et al. Sensors and Actuators B: Chemical, 2019, 283, 487.
9 Sajjadi S, Khataee A, Bagheri N, et al. Journal of Industrial and Engineering Chemistry, 2019, 77, 280.
10 Abdelhameed R M, Abdel-Gawad H, Elshahat M, et al. RSC Advances, 2016, 6(48), 42324.
11 Akpinar I, Yazaydin A O. Journal of Chemical & Engineering Data, 2018, 63(7), 2368.
12 Seyed M M, Payam S, Fereshteh S, et al. Journal of Environmental Chemical Engineering, 2018, 6(4), 4653.
13 Dhummakupt E S, Carmany D O, Mach P M, et al. ACS Applied Mate-rials & Interfaces, 2018, 10(9), 8359.
14 López-Maya E, Montoro C, Rodriguez-Albelo L M, et al. Angewandte Chemie. International Ed. in English, 2015, 54(23), 6790.
15 Gil-San-Millan R, López-Maya E, Hall M, et al. ACS Applied Materials & Interfaces, 2017, 9(28), 23967.
16 Liz-Marzán M L. Materials Today, 2004, 7(2), 26.
17 Li X X, Cui H X, Zeng Z H. Sensors (Basel), 2018, 18(12), 4302.
18 Qu Y, Qian H, Mi Y D, et al. Analytical Methods, 2020, 12(14), 1919.
19 Yi Y, Xiao S M, Guo L. Journal of Instrumental Analysis, 2018, 34(3), 310.
20 Zhou Y, Li C D, Liu R, et al. ACS Biomaterials Science & Engineering, 2020, 6(5), 2805.
21 D'Souza S L, Pati R K, Kailasa S K. Analytical Methods, 2014, 6(22), 9007.
22 Li Z, Wang Y, Ni Y N, et al. Sensors and Actuators B: Chemical, 2014, 193, 205.
23 Li H K, Guo J J, Ping H, et al. Talanta, 2011, 87, 93.
24 Wang M, Gu X G, Zhang G X, et al. Langmuir,2009, 25, 2504.
25 Sun J F, Guo L, Bao Y, et al. Biosens Bioelectron, 2011, 28(1), 152.
26 Pavlov V, Xiao Y, Willner I. Nano Letters, 2005, 5(4), 649.
27 Wu S, Li D D, Wang J M, et al. Sensors and Actuators B: Chemical, 2017, 238, 427.
28 Dong S J. Colorimetric detection of organophosphorous pesticide using gold nanoparticles or MnO2 nanosheets as signal readout. Master's Thesis, Dalian University of Technology, China, 2015 (in Chinese).
董淑杰. Au纳米粒子或MnO2纳米片在农药比色检测中的应用研究. 硕士学位论文,大连理工大学, 2015.
29 Li D D. Gold Nanomaterial dissolution based colorimetric methods for the highly sensitive visual detection of organophosphate pesticides. Master's Thesis, Dalian University of Technology, China, 2017 (in Chinese).
李丹丹. 基于纳米金溶解反应的农药比色检测方法研究. 硕士学位论文, 大连理工大学,2017.
30 Virel A, Saa L, Pavlov V. Analytical Chemistry, 2009, 81, 268.
31 Kumar D N, Alex S A, Kumar R S S, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 485, 111.
32 Chen J L, Chen X J, Huang Q Y, et al. ACS Applied Materials & Interfaces, 2019, 11(36), 32689.
33 Wu X L, Song Y, Yan X, et al. Biosens Bioelectron, 2017, 94, 292.
34 Gong N C, Li Y L, Jiang X, et al. Analytical Sciences September, 2016, 32, 951.
35 Li S C. Synthesis and performance of indicators for chemical warfare agents. Master's Thesis, Academy of Military Sciences PLA China, China, 2019 (in Chinese).
李盛菘. 化学毒剂指示剂的合成与性能研究. 硕士学位论文, 军事科学院, 2019.
36 Liu D B, Chen W W, Wei J H, et al. Analytical Chemistry, 2012, 84(9), 4185.
37 Han W T, Liao S Z, Zhang C H, et al. Chinese Journal of Chemistry, 2013, 31(8), 1072.
38 Bumstead A M, Cordes D B, Dawson D M, et al. Chemistry, 2018, 24(23), 6115.
39 Butova V V, Burachevskaya O A, Ozhogin I V, et al. Microporous and Mesoporous Materials, 2020, 305, 110324.
40 Abid H R, Rada Z H, Li Y, et al. RSC Advances, 2020, 10(14), 8130.
41 Al Haydar M, Abid H R, Sunderland B, et al. Drug Design Development and Therapy, 2019, 13, 23.
42 Chen Y J, Li P, Noh H, et al. Angewandte Chemie. International Ed. in English, 2019, 58(23), 7682.
43 Chen Y W, Qiao Z W, Wu H X, et al. Chemical Engineering Science, 2018, 175, 110.
44 Chen Z J, Hanna S L, Redfern L R, et al. Coordination Chemistry Reviews, 2019, 386, 32.
45 Reda M A, Hassan A G, Mahmoud E, et al. RSC Advances, 2016, 6, 42324.
46 Akpinar I, Drout R J, Islamoglu T, et al. ACS Applied Materials & Interfaces, 2019, 11(6), 6097.
47 Roy A, Srivastava A K, Singh B, et al. Journal of Porous Materials, 2013, 20(5), 1103.
48 Roy A, Srivastava A K, Singh B, et al. Dalton Transactions, 2012, 41(40), 12346.
49 Peterson G W, Wagner G W. Journal of Porous Materials, 2013, 21(2), 121.
50 Giannakoudakis D A, Hu Y P, Florent M, et al. Nanoscale Horiz, 2017, 2(6), 356.
51 Jasmina H C, Søren J, Unni O, et al. Journal of the American Chemical Society, 2008, 130(42), 13850.
52 Nunes P, Gomes A C, Pillinger M, et al. Microporous and Mesoporous Materials, 2015, 208, 21.
53 He K Y, Li Z S, Wang L, et al. ACS Applied Materials & Interfaces, 2019, 11(29), 26250.
54 Moon S Y, Wagner G W, Mondloch J E, et al. Inorganic Chemistry, 2015, 54(22), 10829.
55 Jung H, Kim M K, Lee J, et al. Analytical Letters, 2020, 54(3), 468.
56 Chen Z J, Wang X J, Noh H, et al. CrystEngComm, 2019, 21(14), 2409.
57 Pang Y C, Zang X H, Li H D, et al. Journal of Hazardous Materials, 2020, 384(15), 121430.
58 Montoro C, Linares F, Procopio E Q, et al. Journal of the American Chemical Society, 2011, 133(31), 11888.
59 Joubani M N, Zanjanchi M A, Sohrabnezhad S. Advanced Powder Technology, 2020, 31(1), 29.
60 Lu A X, McEntee M, Browe M A, et al. ACS Applied Materials & Interfaces, 2017, 9(15), 13632.
61 Peterson G W, Lu A X, Epps T H. ACS Applied Materials & Interfaces, 2017, 9(37), 32248.
62 Kim M K, Kim S H, Park M, et al. RSC Advances, 2018, 8(72), 41633.
63 Yang Q F, Wang J, Zhang W T, et al. Chemical Engineering Journal, 2016, 313, 19.
64 Dwyer D B, Lee D T, Boyer S, et al. ACS Applied Materials & Interfaces, 2018, 10(30), 25794.
65 Cho K Y, Seo J Y, Kim H J, et al. Applied Catalysis B: Environmental, 2019, 245, 635.
66 Yao A, Jiao X L, Chen D R, et al. ACS Applied Materials & Interfaces, 2020, 12(16), 18437.
67 Zhang Z J, Nguyen H T, Miller S A, et al. Angewandte Chemie. International Ed. in English, 2015, 54(21), 6152.
68 Denny M S, Cohen S M. Angewandte Chemie. International Ed. in English, 2015, 54(31), 9029.
69 Pastore V J, Cook T R, Rzayev J. Chemistry of Materials, 2018, 30(23), 8639.
70 Gallis D F S, Harvey J A, Pearce C J, et al. Journal of Materials Chemistry A, 2018, 6(7), 3038.
71 Son F A, Wasson M C, Islamoglu T, et al. Chemistry of Materials, 2020, 32(11), 4609.
72 Pankajakshan A, Sinha M, Ojha A A, et al. ACS Omega, 2018, 3(7), 7832.
73 Troya D. The Journal of Physical Chemistry C, 2016, 120(51), 29312.
74 Mehta J, Dhaka S, Bhardwaj N, et al. Sensors and Actuators B: Chemical, 2019, 290, 267.
75 Zhang S L, Jiao Z, Yao W X. Journal of Chromatography A, 2014, 1371, 74.
76 Yang Q, Wang J, Chen X, et al. Journal of Materials Chemistry A, 2018, 6(5), 2184.
77 Liu L D. Silk based enzyme inhibition biosensor for organophosphorus pesticide and aflatoxin B1 detection. Master's Thesis, Soochow University, China, 2018 (in Chinese).
刘柳菂. 丝素基酶抑制型生物传感器的制备与研究. 硕士学位论文, 苏州大学, 2018.
[1] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[2] 余超, 季昌国, 张鹏鲲, 王凯, 王静, 刘畅. 基于相控阵超声的电力线夹检测技术研究[J]. 材料导报, 2022, 36(Z1): 22030019-6.
[3] 王衍, 王英尧, 肖喻丰, 胡琼, 赵全忠, 付强. 基于有序造型设计的干气密封超快激光精密加工[J]. 材料导报, 2022, 36(5): 20120238-9.
[4] 陈如冰, 胡永琴, 陈美珠, 安佳, 吕颖, 刘玉菲, 李东玲. 基于过氧化氢酶介导金纳米颗粒交联聚集的乙肝表面抗原可视化检测[J]. 材料导报, 2022, 36(5): 21020098-4.
[5] 陈达, 刘美含, 张伟, 练美玲. 具有类过氧化物酶活性的纳米材料在比色分析中的研究进展[J]. 材料导报, 2022, 36(13): 20090055-14.
[6] 张洪, 蒋合靖, 夏润川, 王瑰玫, 黎娅, 周建庭. 基于金属磁记忆的持荷钢绞线腐蚀检测试验研究[J]. 材料导报, 2022, 36(13): 21040232-8.
[7] 郭玥婷, 雷美玲, 陈文明, 辛毅, 许文彩, 闵崎, 陈立坤, 吴遥, 孔令策, 左言军. 纳米金属氧化物在化学战剂洗消方面的研究进展[J]. 材料导报, 2022, 36(11): 20090180-10.
[8] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[9] 卢兵兵, 王海斗, 董丽虹, 赵云才, 王慧鹏. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J]. 材料导报, 2021, 35(7): 7139-7144.
[10] 孙静, 李韩飞, 郭培志, 李光林, 刘志远. 柔性可拉伸导电材料用于生理信号获取与反馈的研究简述[J]. 材料导报, 2021, 35(5): 5158-5165.
[11] 张小艳, 陈振斌, 李慧, 陈亚兰, 孙元, 李晓明. 稀有金属钌的分离富集技术与分析方法的研究现状及展望[J]. 材料导报, 2021, 35(23): 23106-23120.
[12] 赵笙良, 刘飞燕, 陈丽琼. 金纳米材料光学传感快速检测方法研究要点初探[J]. 材料导报, 2021, 35(19): 19099-19115.
[13] 杨森, 鲁雁秋, 孙凤, 陈耀凯. 基于纳米孔的单分子检测技术及其研究进展[J]. 材料导报, 2020, 34(Z2): 177-181.
[14] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[15] 高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed