Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 20090089-6    https://doi.org/10.11896/cldb.20090089
  金属与金属基复合材料 |
基于第一性原理计算的Nb含量对hcp Zr-Nb合金力学性质的影响
周少兰1, 潘荣剑2, 王海莲1, 汤爱涛1,*, 何建新3
1 重庆大学材料科学与工程学院,重庆 400044
2 中国核动力研究设计院第一研究所,成都 610005
3 西南技术工程研究所,重庆 400039
Effect of Nb Content on Mechanical Properties of hcp Zr-Nb Alloys Based on First-principles Calculations
ZHOU Shaolan1, PAN Rongjian2, WANG Hailian1, TANG Aitao1,*, HE Jianxin3
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 The First Sub-Institute, Nuclear Power Institute of China, Chengdu 610005, China
3 Southwest Technology and Engineering Research Institute, Chongqing 400039, China
下载:  全 文 ( PDF ) ( 2775KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于密度泛函理论为基础的第一性原理计算方法,通过虚拟晶体近似建模,以密排六方(hcp)结构的Zr-Nb合金为研究对象,计算其弹性常数、弹性模量、泊松比等力学常数,研究Nb含量对Zr-Nb合金力学性能的影响。结果表明:通过虚拟晶体近似方法计算得到的晶格参数与实验及其的计算值符合良好,晶格常数ac随Nb含量的增加而减小。当Nb含量大于10%(原子分数,下同)时,hcp Zr-Nb力学失稳,在力学稳定的条件下(Nb含量低于10%),随Nb含量的增加,体积模量B递增,剪切模量G、弹性模量E递减。各韧脆性判据均表明,随着Nb含量的增加,Zr-Nb合金韧性逐步提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周少兰
潘荣剑
王海莲
汤爱涛
何建新
关键词:  第一性原理  虚拟晶体近似  Zr-Nb合金  力学性质    
Abstract: In order to obtain the effect of Nb content on the mechanical properties of Zr-Nb alloys, the elastic constant, elastic modulus, Poisson's ratio and other mechanical constants of hcp Zr-Nb alloys have been studied by using first-principles calculation based on density functional theory, and virtual crystal approximation method. The calculation results show that the lattice parameters calculated by the virtual crystal approximation method are in good agreement with experimental and other calculation results, and the lattice constants a and c decrease with the increase of Nb content. When the Nb content is greater than 10%, the hcp Zr-Nb alloy is mechanically unstable. Under mechanically stable conditions such as the Nb content less than 10%, with Nb content increasing, the bulk modulus B increases, while the shear modulus G and the elastic modulus E decrease, and the toughness and brittleness criteria show that with Nb content increasing, the toughness of Zr-Nb alloys become much better.
Key words:  first-principles    virtual crystal approximation    Zr-Nb alloy    mechanical property
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG146  
  TG111  
基金资助: 中国核工业集团有限公司领创科研项目(JJXM-JTLC-2020-02);国家重点研发计划项目(2016YFB07001)
通讯作者:  *tat@cqu.edu.cn   
作者简介:  周少兰,2018年毕业于贵州大学,获得无机非金属材料工程工学学士学位。现为重庆大学硕士研究生,在汤爱涛教授的指导下进行研究,主要研究领域为锆合金的第一性原理计算模拟。汤爱涛,博士,教授,博士研究生导师,国家镁合金材料工程技术研究中心骨干研究人员。以镁合金、铝合金和复合材料为重点,主要从事材料数据库、材料的计算模拟以及高性能材料的研究。 1984 年本科毕业于重庆大学冶金系, 2004 年博士毕业于重庆大学材料学院。出版过教材和专著,负责和主研过多项国家级科研项目。作为持证人获得国家科技进步二等奖一项、教育部科技进步一等奖一项、中国高校科技进步一等奖一项,并获得多项国家授权发明专利,发表重要论文60余篇。
引用本文:    
周少兰, 潘荣剑, 王海莲, 汤爱涛, 何建新. 基于第一性原理计算的Nb含量对hcp Zr-Nb合金力学性质的影响[J]. 材料导报, 2022, 36(18): 20090089-6.
ZHOU Shaolan, PAN Rongjian, WANG Hailian, TANG Aitao, HE Jianxin. Effect of Nb Content on Mechanical Properties of hcp Zr-Nb Alloys Based on First-principles Calculations. Materials Reports, 2022, 36(18): 20090089-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090089  或          http://www.mater-rep.com/CN/Y2022/V36/I18/20090089
1 Pascal Yvon. Nuclear Engineering and Design, 2015, 294, 161.
2 Steinbrück M, Birchley J, Boldyrev A V, et al. Progress in Nuclear Energy, 2010, 52(1),19.
3 Duriez C, Dupont T, Schmet B,et al. Journal of Nuclear Materials, 2008, 380(1-3),30.
4 Jung Y I, Lee M H, Kim H G, et al. Journal of Alloys and Compounds, 2009, 479(1-2), 423.
5 Wang X F, Li Z K, Zhou J, et al. Hot Working Technology,2012(2), 79(in Chinese).
王旭峰, 李中奎, 周军,等. 热加工工艺, 2012(2), 79.
6 Zhou J, Li Z K. Materials China, 2014, 33(9), 554(in Chinese).
周军, 李中奎. 中国材料进展, 2014, 33(9), 554.
7 Zhang F E, Luan B F, Wang X, et al. Rare Metal Materials and Engineering, 2020, 49(5), 1819(in Chinese).
张夫恩, 栾佰峰, 王轩,等. 稀有金属材料与工程, 2020, 49(5), 1819.
8 Kharchenko V O, Kharchenko D O. Condensed Matter Physics, 2013, 16(1), 13801.
9 Hayes D J, Brotzen F R. Journal of Applied Physics, 1974, 45(4), 1721.
10 Wang X, Liu L B, Wang M F, et al. Calphad, 2015, 48, 89.
11 Landa A, Soderlind P. Journal of Alloys and Compounds, 2017, 690, 647.
12 Al-Zoubi N, Schönecker S, Li X, et al. Computational Materials Science, 2019, 159, 273.
13 Yang Z B, Zhao W J,Chen Z Q, et al. Acta Metallurgica Sinica, 2017(1), 49.(in Chinese).
杨忠波, 赵文金, 程竹青,等. 金属学报, 2017(1), 49.
14 Park J Y, Choi B K, Jeong Y H, et al. Journal of Nuclear Materials, 2005, 340(2-3), 237.
15 Lin Z J, Cao S, Wang Y, et al. Computational Materials Science, 2018, 155, 524.
16 Xiao T Z, Jun C L, Yue J L, et al. Physica B, Condensed Matter, 2018, 550, 217.
17 Segall M D, Lindan P J D, Probert M J, et al. Journal of Physics Condensed Matter, 2002, 14(11), 2717.
18 Clouet E, Cottura M. Acta Materialia, 2018, 144, 21.
19 Goldak J, Lloyd L T, Barrett C S. Physical Review, 1966, 144(2), 478.
20 Aurelio G, Guillermet A F, Cuello G J, et al. Metallurgical and Mate-rials Transactions A-Physical Metallurgy and Materials Science, 2003, 34A(12), 2771.
21 Kim H G, Sang Y P, Lee M H, et al. Journal of Nuclear Materials, 2008, 373(1-3),429.
22 Kuroda D, Niinomi M, Morinaga M, et al. Materials Science & Enginee-ring A, 1998, 243(1-2),244.
23 Liang Z, Humbert M, Esling C. Journal of Applied Crystallography, 1992, 25(6),751.
24 Watt J P, Davies G F, O'Connell R J. Reviews of Geophysics, 1976, 14, 541.
25 Born M. Optics & Photonics News, 2000, 11(3),62.
26 Basaadat M R, Payami M. International Journal of Modern Physics C, 2019, 31(2), 331.
27 Zhang S, Zhang X, Yan Z, et al. Computational Materials Science, 2012, 61, 42.
28 Fisher E S, Renken C J. Physical Review, 1964, 135(2A), A482.
29 Yang Z N. Research on microstructure and performance control of deformed Zr-Nb alloy. Ph.D. Thesis, Yanshan University, China,2013(in Chinese).
杨志南. 变形Zr-Nb合金组织与性能调控研究.博士学位论文,燕山大学, 2013.
30 Kondo R, Nomura N, Suyala T, et al. Acta Biomaterialia, 2011, 7(12), 4278.
31 Wang M K, Yuan J H, Liu Y F, et al. Acta Metallurgica Sinica. 2021, 57(1),97(in Chinese).
王明康,苑峻豪,刘宇峰等. 金属学报, 2021, 57(1),97.
32 Pugh S F. Philosophical Magazine, 1954, 45, 823.
[1] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[2] 徐良玉, 黄福祥, 龙敏, 邓鸿元, 陈剑. 过渡金属元素(X=Cr, Mn, Co, Ni, Zn, Zr, Nb, Ta)掺杂立方BaTiO3的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 21090275-5.
[3] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[4] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[5] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[6] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[7] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[8] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[9] 常超, 张辉, 来媛, 李良, 白晓旭. FeAlNiCrMn高熵合金结构稳定性和力学性能的第一性原理计算[J]. 材料导报, 2022, 36(14): 21040230-5.
[10] 吴苗苗, 于虎, 王咏琪, 窦睿然, 胡泊, 朱爽秋, 马向东. 锂金属电极与LiCl界面相互作用的第一性原理研究[J]. 材料导报, 2022, 36(12): 21030181-5.
[11] 李亚敏, 张瑶瑶, 周生睿, 刘洪军. Al和Fe对Cr20Ni80电热合金性能影响的第一性原理研究[J]. 材料导报, 2022, 36(11): 20120148-6.
[12] 杨绍斌, 刘雪丽,张旭, 唐树伟. 羟基化平板孔中水合钠离子去溶剂化的第一性原理计算[J]. 材料导报, 2022, 36(1): 20110132-7.
[13] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[14] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[15] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed