Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20062-20067    https://doi.org/10.11896/cldb.20080282
  金属与金属基复合材料 |
非稳态条件下轴承钢的组织均匀性对其摩擦磨损性能的影响
邵若男1,2, 贺甜甜1, 刘建1, 杜三明1, 张永振1
1 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,洛阳 471023
2 河南科技大学材料科学与工程学院, 洛阳 471023
Influence of Bearing Steels Structure Uniformity on Friction and Wear Performance Under Unsteady States
SHAO Ruonan1, HE Tiantian1, LIU Jian1, DU Sanming1, ZHANG Yongzhen1
1 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, China
2 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
下载:  全 文 ( PDF ) ( 6678KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究非稳态条件下不同组织轴承钢的摩擦磨损性能,采用光学和扫描电子显微镜(OM和SEM)、X射线衍射仪(XRD)、硬度计对两种GCr15钢的显微组织、残余奥氏体(A′)、硬度进行分析,采用UMT-2摩擦磨损试验机进行乏油、干摩擦两种非稳态滑动摩擦磨损试验,通过SEM、三维形貌仪对磨痕形貌进行分析,研究非稳态条件下组织对性能的影响。结果表明:国内的1#GCr15钢组织不均匀,淬-回火后金相组织呈现典型的“黑白区”形貌,且带状和网状碳化物的等级明显高于国外的2#GCr15钢。两种条件下,1#GCr15钢摩擦系数和磨损量均大于2#GCr15钢;乏油条件下两种钢的磨损机制均为磨粒磨损;干摩擦条件下,1#GCr15钢以氧化、黏着、剥落磨损为主;2#GCr15钢以黏着磨损为主,伴随少量氧化磨损。碳化物不均匀导致轴承钢组织不均匀,同时增加淬火开裂倾向,使其表层薄弱区域在摩擦磨损过程中产生裂纹,造成剥落或早期失效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵若男
贺甜甜
刘建
杜三明
张永振
关键词:  轴承钢  组织  非稳态润滑  摩擦磨损    
Abstract: To investigate the friction and wear properties of bearing steels with different microstructure under unsteady states. The microstructure, retained austenite (A′) and hardness of two kinds of GCr15 steels were analyzed by optical and scanning electron microscope (OM and SEM), X-ray diffraction (XRD) and hardness tester. The sliding friction and wear test under the unstable states of lean oil and dry friction was carried out by using the UMT-2 friction and wear equipment. The influence of microstructure on performance under unsteady states were studied by analyzed the wear trace morphologies by SEM and three-dimensional tester.The results show that the microstructure of domestic 1#GCr15 steel is nonuniform, and the microstructure shows typical “black and white zone” morphology after quenching and tempering, and the grade of banded and reticulated carbide is obviously higher than that of foreign 2#GCr15 steel. Under the two conditions, the friction coefficient and wear lose of 1#GCr15 steel are larger than 2#GCr15 steel. Under the condition of lean oil, the wear mechanism of both steels is abrasive wear. Under dry friction condition, 1#GCr15 steel is mainly characterized by oxidation, adhesion and spalling wear. 2#GCr15 steel is mainly adhesive wear, accompanied by a small amount of oxidation wear. Uneven carbide results in uneven structure of bearing steel, and increases the tendency of quenching crac-king, which leads to cracks in the surface area of bearing steel during the friction and wear process, resulting in spallation or early failure.
Key words:  bearing steel    structure    unsteady lubrication    friction and wear
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG142.1  
基金资助: 国家重点研发计划(2018YFB2000302);国家自然科学基金(51905153)
通讯作者:  tthe@haust.edu.cn   
作者简介:  邵若男,河南科技大学硕士研究生,2018年获得河南科技大学材料科学与工程学院学士学位,目前主要从事轴承材料组织与摩擦磨损性能研究。
贺甜甜,河南科技大学讲师,2016年博士毕业于中科院金属研究所,主要从事轴承材料的研究,重点研究轴承钢梯度纳米结构和组织演变,在国内外期刊发表学术论文40余篇,其中SCI检索20余篇,同时拥有发明专利20余项。
引用本文:    
邵若男, 贺甜甜, 刘建, 杜三明, 张永振. 非稳态条件下轴承钢的组织均匀性对其摩擦磨损性能的影响[J]. 材料导报, 2021, 35(20): 20062-20067.
SHAO Ruonan, HE Tiantian, LIU Jian, DU Sanming, ZHANG Yongzhen. Influence of Bearing Steels Structure Uniformity on Friction and Wear Performance Under Unsteady States. Materials Reports, 2021, 35(20): 20062-20067.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080282  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20062
1 Zhang L F, Duan J. Materials Reports,2019,33(S2),452(in Chinese).
张李锋,段江.材料导报,2019,33(S2),452.
2 Wang A L, Wang J G. Chinese Journal of Mechanical Engineering,2014,27(6),1272.
3 Zhang S, Xu Z Z, Zhang B, et al. Materials Reports B: Research Papers,2017,31(1),82(in Chinese).
张硕,徐梓真,张冰,等.材料导报:研究篇,2017,31(1),82.
4 Yang L J, Ding Y, Cheng B, et al. Applied Surface Science,2018,434(15),831.
5 Tanaka Y, Matsunaga H, Endo M, et al. Procedia Structural Integrity,2019,19,320.
6 Brodyanski A, Klein M W, Merz R, et al. Materials Characterization,2020,163,110231.
7 Oezel M, Janitzky T, Beiss P, et al. Wear,2019,430-431,272.
8 Long X Y, Zhang F C, Yang Z N, et al. Materials Science & Engineering A,2018,715,10.
9 Danielsen H K, Gutiérrez Guzmán F, Dahl K V, et al. Wear,2017,370-371,73.
10 Chen Y Q, Wu Y W, Qin Z W, et al. Materials for Mechanical Enginee-ring,2018,42(5),55(in Chinese).
陈叶青,吴益文,秦子威,等.机械工程材料,2018,42(5),55.
11 Zhang F Y. Study on microstructure and wear resistance of the metamorphic layer of GCr15 bearing steel in hard cutting. Ph.D. Thesis, Dalian University of Technology, China,2019(in Chinese).
张方圆.硬切削GCr15轴承钢表面变质层微观组织及抗磨损性能研究.博士学位论文,大连理工大学,2019.
12 Zhang S. Research on friction characteristics of bearing grease in point contact under medium-low speed state.Master’s Thesis, Henan University of Science and Technology, China,2015(in Chinese).
张硕.点接触中低速状态下轴承润滑脂摩擦特性研究.硕士学位论文,河南科技大学,2015.
13 Zheng C L, She L, Wang Y H, et al. Journal of Mechanical Engineering,2017,53(24),110(in Chinese).
郑春雷,佘丽,王艳辉,等.机械工程学报,2017,53(24),110.
14 Lu Y F. Numerical simulation of the effects of microstructure and inclusion on fatigue behavior of high-temperature. Master’s Thesis, Harbin Institute of Technology, China,2019(in Chinese).
陆宇帆.微观组织夹杂对高温轴承钢疲劳行为影响的数值模拟.硕士学位论文,哈尔滨工业大学,2019.
15 Cao Y J, Sun J Q, Ma F, et al. Tribology International,2017,115,108.
16 Yi M, Duan H T, Chen S, et al. Engineering Plastics Application,2018,46(6),105(in Chinese).
易蒙,段海涛,陈松,等.工程塑料应用,2018,46(6),105.
17 Ji Y P, Liu Z C, Ren H P, et al. Materails for Mechanical Engineering,2013,37(3),1(in Chinese).
计云萍,刘宗昌,任慧平,等.机械工程材料,2013,37(3),1.
18 Su Y S. Research on subsurface damage mechanism of GCr15 contact fatigue. Master’s Thesis, Lanzhou University of Technology, China,2017(in Chinese).
苏云帅.GCr15接触疲劳亚表面损伤机制研究.硕士学位论文,兰州理工大学,2017.
19 Zhang C L, Liu X, Zhang D, et al. Transactions of Materials and Heat Treatment,2014,35(S1),45(in Chinese).
张朝磊,刘翔,张丹,等.材料热处理学报,2014,35(S1),45.
20 Wang Y S, Chen X C, You L L, et al. MW Metal Forming,2018(9),52(in Chinese).
王艳山,陈小超,尤蕾蕾,等.金属加工(热加工),2018(9),52.
21 Liu C, Chen J L, Zhang P C, et al. Heat Treatment of Metals,2017,42(10),223(in Chinese).
刘超,陈继林,张鹏程,等.金属热处理,2017,42(10),223.
22 Ma B T, Liu C Q, Lin J, et al. China Metallurgy,2012,22(7),24(in Chinese).
马丙涛,刘超群,林洁,等.中国冶金,2012,22(7),24.
23 Sun Q. Effect of controlled rolling and controlled cooling on the network carbide of the GCr15 bearing steel. Master’s Thesis, Dalian University of Technology, China,2016(in Chinese).
孙强.控轧控冷对GCr15轴承钢网状碳化物的影响.硕士学位论文,大连理工大学,2016.
24 Shen Q C. Quality controlling research of high standard bearing steel SUJ2. Master’s Thesis, Anhui University of Technology, China,2017(in Chinese).
沈千成.高标轴承钢SUJ2的质量控制研究.硕士学位论文,安徽工业大学,2017.
25 Cristallini A, Guarnaschelli C, Dionisi VICI F, et al.In: Control of core segregation and size of carbides in high carbon bearing steel GCr15. Conference Proceedings of the 7th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking. Qingdao, China,2017,pp.393.
26 An H H, Bao Y P, Wang M, et al. Ironmaking & Steelmaking,2019,46(9),896.
27 Gao Q Y, Li S X, Su Y S. Tribology,2019,39(6),698(in Chinese).
高清远,李淑欣,苏云帅.摩擦学学报,2019,39(6),698.
28 Guo S Z, Mao X J. Environmental Technology,2014,32(5),81(in Chinese).
郭四洲,毛晓军.环境技术,2014,32(5),81.
29 Guo R B. Study on evolution of microstructure and mechanical properties of high-speed train axle box bearing. Ph.D. Thesis, Beijing Jiaotong University, China,2019(in Chinese).
呙如兵.高速列车轴箱轴承材料微观结构及力学性能演化规律研究.博士学位论文,北京交通大学,2019.
30 An L Y, Li P, Liu D Y, et al. Journal of Dalian Jiaotong University,2020,41(1),79(in Chinese).
安立愿,李朋,刘德义,等.大连交通大学学报,2020,41(1),79.
31 Wang N, Ding B D, Wang H, et al. Heat Treatment Technology and Equipment,2019,40(3),48(in Chinese).
王宁,丁北斗,王浩,等.热处理技术与装备,2019,40(3),48.
32 Lai H Z. Research on forming mechanism of banded structure in 60Si2Mn spring flat steel and its influence on mechanical properties. Master’s Thesis, Jiangxi University of Science and Technology, China,2014(in Chinese).
赖泓州.60Si2Mn弹簧扁钢带状组织形成机理及对性能的影响研究.硕士学位论文,江西理工大学,2014.
33 Zhai J L, Chen M, Tao J W. Special Steel Technology,2016,22(2),50(in Chinese).
翟蛟龙,陈敏,陶佳伟.特钢技术,2016,22(2),50.
34 Li M, Zhao Y Q, He X, et al. Shanghai Metals,2017,39(1),49(in Chinese).
李明,赵永桥,何星,等.上海金属,2017,39(1),49.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[3] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[4] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[5] 王书明, 张华, 左玉婷, 曹瑞军. 钴的相变织构及微观结构研究[J]. 材料导报, 2021, 35(Z1): 378-380.
[6] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[7] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[8] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[9] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[10] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[11] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[12] 朱菲, 吴祖洁, 程明辉, 管金华, 邹龙. 金属纳米颗粒的生物合成研究进展[J]. 材料导报, 2021, 35(7): 7127-7138.
[13] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[14] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[15] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed