Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18141-18145    https://doi.org/10.11896/cldb.20070207
  金属与金属基复合材料 |
单膜双室同槽电解金属锰联产EMD离子的传输机理研究
宋小三1,2, 郑洋洋1, 王三反1, 张志华3, 宋正平3, 马林3
1 兰州交通大学,寒旱地区水资源综合利用教育部工程研究中心,兰州 730070
2 兰州交通大学,甘肃省黄河水环境重点实验室,兰州 730070
3 宁夏天元锰材料研究院, 中宁 755100
Study on EMD Ion Transport Mechanism of Co-production of Electrolytic Manganese with Single Membrane and Two Chambers
SONG Xiaosan1,2, ZHENG Yangyang1, WANG Sanfan1, ZHANG Zhihua3, SONG Zhengping3, MA Lin3
1 Engineering Research Center of Ministry of Education for Comprehensive Utilization of Water Resources in Cold and Drought Areas, Lanzhou Jiaotong University,Lanzhou 730070, China
2 Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
3 Ningxia Tianyuan Manganese Material Research Institute, Zhongning 755100,China
下载:  全 文 ( PDF ) ( 6433KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对传统布式隔膜袋电解技术工艺中存在的诸多弊端,本研究提出了单膜双室膜电解工艺,以MnSO4+(NH4)2SO4为电解液体系,实现在阴极产锰的同时在阳极联产电解二氧化锰,并在阳极室中回收硫酸。通过测定阴阳极室中各离子成分的变化情况,来深入分析电解过程中的离子传输行为,以验证单膜双室同槽电解的技术可行性。实验结果表明:单膜双室电解法能够有效实现同槽电沉积金属锰并联产电解二氧化锰,同时在阳极室中回收硫酸,硫酸浓度可达1.5 mol/L,满足前端锰矿酸浸工艺要求,促进了对资源的高效回收利用。采用TRJAM-10W阴离子交换膜的阴极产锰率和阳极酸回收率最高,分别可达77.0%和64.3%,而采用Ionsep-HC阴离子交换膜的阳极产EMD率最高,为27.3%。TRJAM-10W阴离子交换膜的槽电压最小,为4.43 V,其电能消耗也最低,为5 607 kW·h·t-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋小三
郑洋洋
王三反
张志华
宋正平
马林
关键词:  单膜双室    电解二氧化锰  离子传输    
Abstract: In view of the many drawbacks in the traditional cloth-type membrane bag electrolysis technology process,a single-membrane double-chamber membrane electrolysis process was proposed, using MnSO4+(NH4)2SO4 as the electrolyte system to realize co-production of electroly-tic manganese dioxide at the anode while producing manganese at the cathode,and recover sulfuric acid in the anode chamber. By measuring the changes of the ion components in the cathode and anode chambers, the ion transmission behavior in the electrolysis process is analyzed in depth to verify the technical feasibility of the single-membrane double-chamber electrolysis with the same tank. The experimental results show that the single-membrane double-chamber electrolysis method can effectively realize the electrolytic production of manganese dioxide in parallel with the electrodeposition of metal manganese, and at the same time recover sulfuric acid at the anode. The sulfuric acid concentration reaches 1.5 mol/L, which meets the front-end manganese ore acid leaching process requirements,promote the efficient recycling of resources.The cathode manganese production rate and anodic acid recovery rate using TRJAM-10W anion exchange membrane are the highest, reaching 77.0% and 64.3%, respectively, while the anode EMD production rate of Ionsep-HC anion exchange membrane is the highest at 27.3%. TRJAM-10W anion exchange membrane has the lowest cell voltage of 4.43 V, and its electrical energy consumption is also the lowest at 5 607 kW·h·t-1.
Key words:  single membrane double chamber    manganese    electrolytic manganese dioxide    ion transport
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TF792  
基金资助: 宁夏回族自治区重点研发计划重点项目(2020BDE92023);甘肃省高等学校科研项目(2020A-040;2020C-38);国家自然科学基金项目(21466019)
作者简介:  宋小三,兰州交通大学副教授,硕士生导师。主要从事市政工程、污染控制工程等方面的教学及研究工作。主持甘肃省科技厅项目2项、横向项目2项,参与国家科技支撑计划项目、国家自然基金项目、水体污染控制与治理科技重大专项、甘肃省科技厅、建设厅、教育厅等多项科研项目;发表研究论文10余篇;获省部级科技奖励2项,厅局级科技奖励4项;发明及实用新型专利授权6项;参编出版教材2部。
引用本文:    
宋小三, 郑洋洋, 王三反, 张志华, 宋正平, 马林. 单膜双室同槽电解金属锰联产EMD离子的传输机理研究[J]. 材料导报, 2021, 35(18): 18141-18145.
SONG Xiaosan, ZHENG Yangyang, WANG Sanfan, ZHANG Zhihua, SONG Zhengping, MA Lin. Study on EMD Ion Transport Mechanism of Co-production of Electrolytic Manganese with Single Membrane and Two Chambers. Materials Reports, 2021, 35(18): 18141-18145.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070207  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18141
1 Padhy S K, Patnaik P, Tripathy B C,et al. Hydrometallurgy, 2016,165,73.
2 Tsurtsumia G, Shengelia D, Koiava N, et al. Hydrometallurgy, 2019, 186,260.
3 Biswal A,Tripathy B C,Sanjay K. Cheminform, 2015, 5(72),58255.
4 Chen Y, Lu S, Li Y, et al. Materials Letters, 2019, 248(1),157.
5 Li W J, Tan R, Zhang L Y,et al. China Manganese Industry,2019,37(3),1(in Chinese).
李维健,谭蓉,张丽云,等.中国锰业,2019,37(3),1.
6 Li T Q, Li H, Zhang L Y.China Manganese Industry,2019,37(3),5(in Chinese).
李同庆,李慧,张丽云.中国锰业,2019,37(3),5.
7 Tan Z Z.China Manganese Industry,2004(3),4(in Chinese).
谭柱中.中国锰业,2004(3),4.
8 Li X H,Zhou C B,Zhu N F,et al. Journal of Environmental Engineering Technology, 2013,3(6),514(in Chinese).
李旭华,周长波,朱宁芳,等.环境工程技术学报,2013,3(6),514.
9 Paidar M, Fateev V, Bouzek K. Electrochimica Acta, 2016, 209,737.
10 Tan L Y, Wang X H. Chemical Progress, 2002(12),40(in Chinese).
谭翎燕, 王训遒.化工进展, 2002(12),40.
11 Zhang X Y, Song B H, Li M,et al. China Manganese Industry, 2013(4),33(in Chinese).
张翔宇, 宋宝华, 李萌,等. 中国锰业, 2013(4),33.
12 Li T, Wang S F, Zhou J. Materials Review, 2016(S2),445(in Chinese).
李韬, 王三反, 周键. 材料导报, 2016(S2),445.
13 周键,王三反,王挺.中国专利, CN102828205A,2012-12-19.
14 周键,王三反.中国专利,CN203419995U,2014-02-05.
15 Meng H, Peng C S, Lu S C. Journal of University of Science and Techno-logy Beijing, 2002(6),656(in Chinese).
孟洪,彭昌盛,卢寿慈.北京科技大学学报,2002(6),656.
16 Wang S F, Wan Y H, Zhang G J, et al.Journal of Lanzhou Railway University, 2000(3),72(in Chinese).
王三反,完颜华,张国俊,等.兰州铁道学院学报,2000(3),72.
17 Sata T. Journal of Membrane Science, 2000, 167(1),1.
18 Sata T, Teshima K, Yamaguchi T.Journal of Polymer Science Part A Polymer Chemistry, 2015, 34(8),1475.
19 Chen X, Jiang Y, Yang S, et al. Journal of Membrane Science, 2017, 524,280.
20 Lu J, Dreisinger D, Glück T.Hydrometallurgy, 2014, 141, 105.
21 Wang J M. China Manganese Industry,1994(1),47(in Chinese).
王敬民.中国锰业,1994(1),47.
22 Chen H L, Zhang Y T, Zhang Q Y, et al.Bulletin of the Chinese Ceramic Society, 2017,36(8),2844(in Chinese).
陈红亮, 张玉涛, 张秋云,等.硅酸盐通报, 2017,36(8),2844.
23 Guan W X,Wang S F.Fine Chemicals,2020,37(3),573(in Chinese).
关文学,王三反.精细化工,2020,37(3),573.
[1] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[2] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[3] 郭梓阳, 霍旺晨, 张育新, 任山, 杨剑. 锰基低温NH3-SCR脱硝催化剂的研究概述[J]. 材料导报, 2021, 35(13): 13085-13099.
[4] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[5] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[6] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[7] 彭增伟, 刘保亭. 外延掺锰铁酸铋薄膜电容器的光电导和光伏效应[J]. 材料导报, 2020, 34(6): 6010-6014.
[8] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[9] 黄秋月, 张亚茹, 李佳贤, 时霄霄, 缪玮珉, 巫佳思, 杜金志. 自驱动二氧化锰纳米马达的制备与性能[J]. 材料导报, 2020, 34(6): 6033-6038.
[10] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[11] 殷珂, 陈瑞洋, 刘志明. 锰基氧化物上甲苯催化氧化的研究进展[J]. 材料导报, 2020, 34(23): 23051-23056.
[12] 李晶, 秦元斌, 宁晓辉. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020, 34(16): 16001-16005.
[13] 王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
[14] 徐祺, 王三反, 孙百超. 双膜三室同槽电解金属锰和微粒电解二氧化锰的控制因素[J]. 材料导报, 2020, 34(14): 14016-14022.
[15] 黄慧娟, 尚莉莉, 马建锋, 田根林, 杨淑敏, 刘杏娥. 锰氧化物催化分解室内甲醛的研究进展[J]. 材料导报, 2019, 33(Z2): 521-525.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed