Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24155-24159    https://doi.org/10.11896/cldb.19100240
  高分子与聚合物基复合材料 |
聚苯乙烯纳米球模板和Si衬底的微结构随离子束轰击时间的演变规律
李东泽1, 张明灵1, 杨杰1,2, 王茺1,2, 杨宇2,3
1 云南大学材料科学与工程学院,昆明650091
2 云南大学国家光电子能源材料国际联合研究中心,昆明650091
3 云南大学能源研究院,昆明650091
Microstructure Evolution of Polystyrene Nanosphere Template and Si Substrate with the Exposure Time Under Ion Beam Bombardment
LI Dongze1, ZHANG Mingling1, YANG Jie1,2, WANG Chong1,2, YANG Yu2,3
1 School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
2 International Joint Research Center for Optoelectronic and Energy Materials, Yunnan University, Kunming 650091, China
3 School of Energy, Yunnan University, Kunming 650091, China
下载:  全 文 ( PDF ) ( 4633KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用离子束正入射轰击Si衬底上有序密排的聚苯乙烯(PS)纳米球模板,通过分析PS纳米球和Si衬底的微结构与离子束轰击时间的关系,研究了离子束的非选择性刻蚀对PS纳米球和Si衬底的刻蚀作用。实验结果表明:随着离子束轰击时间的延长,PS纳米球的直径和高度都呈单调递减的趋势,但是高度减小得更快。在这个过程中,PS纳米颗粒发生了由对称的圆形到非对称的圆形再到圆锥形的形貌转变,第一阶段的形变是离子束的各向异性刻蚀造成的,第二阶段可能与离子束的长时间轰击导致的热量积累有关。当PS纳米颗粒的尺寸和形貌发生变化的同时,Si衬底的微结构也在改变。当轰击时间为4 min时,在PS纳米颗粒下方观察到凸起的Si平台,随着时间的延长,Si平台的底端直径呈先稳定后减小的趋势,其高度则持续增加。同样,Si平台也经历着形貌的转变,第一阶段由圆柱形平台向截顶圆锥形平台转变,该形貌转变导致Si平台底端直径在轰击初期保持稳定;第二阶段发生在PS纳米颗粒消失后,由截顶圆锥形转变为圆锥形,形成了有序的Si纳米锥阵列,其直径在65~100 nm范围内。结合金属辅助化学刻蚀以及合适的非密排PS纳米颗粒模板,制备出有序的Si纳米线阵列,纳米线的直径为70~124 nm。这些结果为新型有序纳米材料的研制和应用提供了一定的基础及参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李东泽
张明灵
杨杰
王茺
杨宇
关键词:  离子束刻蚀  纳米球刻蚀  有序阵列  Si纳米线  Si纳米锥    
Abstract: Aself-assembled monolayer film of polystyrene (PS) nanospheres with close-packed arrays on Si substrate was bombarded at normal incidence by Ar+ ion beam. The systematic study of non-selected etching of PS nanospheres and Si substrate were performed through the investigation on their microstructure evolution with the exposure time. With an increase in exposure time, the diameter and height of PS nanoparticles decreased monotonically, while the etching rate of nanoparticle height was higher. In this process, the shapes of PS nanoparticles were transformed from symmetrical sphere to asymmetric sphere and then cone. The reason for the first step of shape transition was the anisotropic etching of PS nanoparticles during physical sputtering process. For the second shape transition, it was attributed to the thermal energy accumulated gradually in a long-time bombardment of ion beam. At the same time, the surface structure of Si substrate was also changed. When the exposure time was 4 min, Si mesas with cylindrical morphology were observed under the PS nanoparticles. The change of the bottom diameter of Si mesas showed a trend of first stabilizing and then decreasing with the increase of exposure time. While, the height of Si mesas was continually enhanced. Simultaneously, the transition of Si mesa shapes also occurred. In the first step, cylindrical Si mesas were transformed to ones with truncated cone shape, leading to the stabilization of bottom diameter at the beginning of ion beam bombardment. Secondly, the shapes of Si mesas were transformed from truncated cone to cone after PS nanoparticles disappeared. And then ordered array of Si nanocones with a diameter range of 65—100 nm have been obtained. Combined with the suitable non-close-packed PS nanoparticle arrays and metal-assisted chemical etc-hing technology, ordered array of Si nanowires with a diameter range of 70—124 nm was prepared. These results lay a foundation and provide an alternative method for the development of novel ordered nanomaterials.
Key words:  ion beam etching    nanosphere lithography    ordered array    Si nanowires    Si nanocones
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TB383  
基金资助: 国家自然科学基金(11504322;11564043);云南省应用基础研究计划面上项目(2019FB130;2016FB002);云南省教育厅科学研究基金项目(2019J0004);云南大学东陆中青年骨干教师培养项目
通讯作者:  jieyang@ynu.edu.cn   
作者简介:  李东泽,2018年毕业于昆明理工大学材料科学与工程专业,获得工学学士学位。现为云南大学硕士研究生,在杨杰副研究员的指导下进行研究。目前主要的研究方向为硅基低维纳米材料和器件的制备及光电性能。
杨杰,云南大学副研究员,硕士研究生导师。2013年在昆明理工大学获得工学博士学位,同年在云南大学任教。在国内外学术期刊上发表论文30余篇,申请国家发明专利8项,其中授权5项。研究工作主要围绕先进Ge/Si纳米光电子及能源材料与器件的研制,开展基于低维复合材料的光电探测器、太阳能电池、锂离子电池的基础理论和实验研究。先后主持包括国家自然科学基金青年项目和云南省基础研究计划面上项目等。获得云南省科学技术奖自然科学类一等奖1项。
引用本文:    
李东泽, 张明灵, 杨杰, 王茺, 杨宇. 聚苯乙烯纳米球模板和Si衬底的微结构随离子束轰击时间的演变规律[J]. 材料导报, 2020, 34(24): 24155-24159.
LI Dongze, ZHANG Mingling, YANG Jie, WANG Chong, YANG Yu. Microstructure Evolution of Polystyrene Nanosphere Template and Si Substrate with the Exposure Time Under Ion Beam Bombardment. Materials Reports, 2020, 34(24): 24155-24159.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100240  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24155
1 McAlpine M C, Ahmad H, Heath J R, et al. Nature Materials, 2007, 6, 379.
2 Huang S F, Jiang Z M, Cheng C W, et al. ACS Applied Materials Interfaces, 2014, 6, 12111.
3 Wu Z L,Fan Y L, Zhong Z Y, et al. Nanotechnology, 2014, 25, 055204.
4 Cheng F L, Dai X C, Xu C W, et al. Electrochimica Acta, 2010, 55, 2295.
5 Ghosh S, Satyanarayana V S V, Gonsalves K E, et al. Scientific Reports, 2016, 6, 22664.
6 Cai H G, Wind S J. Langmuir, 2016, 32, 10034.
7 Kuo C W, Shiu J Y, Chen P, et al. Advanced Materials, 2003, 15, 1065.
8 Lee D, Lee J W, Yoon E, et al. Applied Physics Letters, 2017, 110, 191103.
9 Yeom J, Ratchford D, Pehrsson P E, et al. Advanced Functional Mate-rials, 2014, 24, 106.
10 Weng X K, Yang J, Wang C, et al. Nano, 2019, 14, 1930004.
11 Gao M, Cho M, Park I, et al. Small, 2018, 14, 1703691.
12 Jiang Y W, Fan Y L, Jiang Z M, et al. Nanoscale Research Letters, 2016, 11, 102.
13 Ma Y J, Zhong Z Y, Jiang Z M, et al. Optics Express, 2013, 21, 6053.
14 Asoh H, Fujihara K, One S. Nanoscale Research Letters, 2012, 7, 406.
15 Tan B J Y, Sow C H, Ong C K, et al. Journal of Physical Chemistry B, 2004, 108, 18575.
16 Zhang D, Qin X M, Shi W Z, et al. Journal of Nanoscience and Nanotechnology, 2017, 17, 4989.
17 Hanarp P, Sutherland D S, Kasemo B, et al. Colloids and Surface A, 2003, 214, 23.
18 Yan L L, Wang K, Ye L. Journal of Physical Chemistry B, 2006, 110, 11241.
19 Gao H X, Li X H, Wang Y Q, et al. Nanoscale Research Letters, 2017, 12, 105.
20 Yang J, Wang C, Yang Y, et al. Nanoscale Research Letters, 2018, 13, 177.
21 Wang L M, Zhong Z Y, Jiang Z M, et al. Nanotechnology, 2016, 27, 405705.
22 Plettl A, Enderle F, Ziemann P, et al. Advanced Functional Materials, 2009, 19, 3279.
23 Pokroy B, Kang S H, Aizenberg J, et al. Science, 2009, 323, 237.
24 Chun D W, Kim T K, Chen R, et al. Nanotechnology, 2016, 27, 455302.
[1] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[2] 徐兰芳, 王锋, 于英豪, 涂伟萍. 超亲水/水下超疏油膜功能材料及其研究进展[J]. 材料导报, 2020, 34(17): 17105-17114.
[3] 李凯, 高文明, 杜莹, 李箭. 直接CH4固体氧化物燃料电池金属支撑体研究现状与发展[J]. 材料导报, 2020, 34(17): 17149-17154.
[4] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[5] 林欢, 寇爱静, 张建伦, 董华. 电流热退火效应对碳纤维导热性能的影响[J]. 材料导报, 2020, 34(14): 14198-14203.
[6] 董小花, 程亮, 陈春彩, 朱贤方. 均匀电子束辐照诱导多壁碳纳米管非晶化[J]. 材料导报, 2019, 33(24): 4031-4034.
[7] 鲁亚稳, 常胜男, 刘元军, 刘皓, 赵晓明, 李晓久. 基于AAO模板的高聚物纳米阵列薄膜的研究进展[J]. 材料导报, 2019, 33(23): 3990-3998.
[8] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[9] 王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
[10] 孙诚, 顾佳俊, 章潇慧, 祝弘滨, 刘佰博, 张丽娇, 刘庆雷, 张旺, 张荻. 基于生物精细构型的光催化材料和光热转换材料的研究进展[J]. 材料导报, 2019, 33(21): 3662-3668.
[11] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[12] 王若男, 刘斌, 陈爱强, 杨文哲, 马晓燕. 纳米流体液滴在铁板上蒸发的动力学研究[J]. 材料导报, 2019, 33(z1): 132-135.
[13] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[14] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[15] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed