Wearable Triboelectric Nanogenerator:Mechanism,Structure and Applications
YAO Wentao1, LI Chunhong1, SUN Yue1, ZHENG Yide2, LI Wei1,*, GUO Zengge1,*
1 Luthai School of Textile and Apparel, Shandong University of Technology, Zibo 255000, Shandong, China 2 College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China
Abstract: The rapid development of science and technology has led to the popularization of intelligence. Users have more functional pursuit for flexible wearable products. At present, most of the flexible devices can not be used without power supply. It limits the development of devices. Dri-ven by this demand, the development of triboelectric nanogenerator (TENG) has attracted much attention. It has a wide range of energy sources, which include wind, ocean, and human movement. In addition, it has the advantages of high sensitivity, diverse morphology, small size and low cost. This paper focuses on the mechanism, structure and application of TENG. Firstly, based on the mechanism, four TENG wor-king modes are introduced in detail. Secondly, the structure design of TENG in improving performance is systematized. It mainly includes 3D structure design, interface structure design and optimization scheme, and analyzes the influence of different structure design on electrical signal output. Then, the practical application fields of TENG as a direct or indirect wearable device are introduced. Finally, it points out the shortcomings of TENG and the future development direction.
1 Shen J, Li B, Yang Y, et al. Biosensors and Bioelectronics, 2022, 216, 114595. 2 Dong K, Tang W. Science China Technological Sciences, 2023, 53(6), 953 (in Chinese). 董凯, 唐伟. 中国科学:技术科学, 2023, 53(6), 953. 3 Xiong Y, Luo L, Yang J, et al. Nano Energy, 2023, 107, 108137. 4 Fan F R, Tian Z Q, Lin W Z. Nano Energy, 2012, 1(2), 328. 5 An X, Wang C, Shao R, et al. International Journal of Smart and Nano Materials, 2021, 12(3), 233. 6 Korkmaz S, Kariper A. Synthetic Metals, 2021, 273, 116692. 7 Gunawardhana K R S D, Wanasekara N D, Dharmasena R D I G. iScience, 2020, 23(8), 101360. 8 Jiang C, Li X, Ying Y, et al. Nano Energy, 2020, 74, 104863. 9 Kim D Y, Kim H S, Kong D S, et al. Nano Energy, 2018, 45, 247. 10 Lu Q, Sun M, Huang B, et al. Advanced Energy and Sustainability Research, 2021, 2(4), 2000087. 11 Dassanayaka D G, Alves T M, Wanasekara N D, et al. Advanced Functional Materials, 2022, 32(44), 2205438. 12 Xu Z A, Wu Y M, Guo H, et al. Journal of Textile Engineering, 2023, 1(6), 71 (in Chinese). 许子傲, 吴雅梦, 郭浩, 等. 纺织工程学报, 2023, 1(6), 71. 13 Wei Y, Zu G, Sun C, et al. Langmuir, 2023, 39(11), 4060. 14 Wang S, Gao J, Lu F, et al. Nano Energy, 2023, 108, 108230. 15 Vazquez-lopez A, Del rio saez J S, De la vega J, et al. ACS Sensors, 2023, 8(4), 1684. 16 Pu X, Zhang C, Wang Z L. National Science Review, 2023, 10(1), 28. 17 Dong K, Hu Y, Yang J, et al. MRS Bulletin, 2021, 46(6), 512. 18 Li T, Wei H, Zhang Y, et al. Carbohydrate Polymers, 2023, 309, 120678. 19 Zou J, Jing X, Chen Z, et al. Advanced Functional Materials, 2023, 33(15), 2213895. 20 Zhang M R, Gao G W. Transducer and Microsystem Technologies, 2023, 42(12), 1 (in Chinese). 张明叡, 高国伟. 传感器与微系统, 2023, 42(12), 1. 21 Liu W N, Zhang Z J. Tianjin Paper Making, 2023, 45(1), 26 (in Chinese). 刘文娜, 张正健. 天津造纸, 2023, 45(1), 26. 22 Han W J. Triboelectric joint sensors and their application in knee walking aids. Master's Thesis, Nanjing University of Posts and Telecommunications, China, 2023 (in Chinese). 韩文杰. 摩擦电关节传感器及其在膝关节助力装置中应用的研究. 硕士学位论文, 南京邮电大学, 2023. 23 Kim W G, Kim D W, Tcho I W, et al. ACS Nano, 2021, 15(1), 258. 24 Elsanadidy E, Mosa I M, Luo D, et al. Advanced Functional Materials, 2023, 33(8), 2211177. 25 Zhao Z, Lu Y, Mi Y, et al. Micromachines, 2022, 13(10), 1586. 26 Wang C, Guo H, Wang P, et al. Advanced Materials, 2023, 35(17), 2209895. 27 Kim J Y, Kaganovich I, Lee H C. Plasma Sources Science and Technology, 2022, 31(3), 033001. 28 Cao Z, Wu Z, Ding R, et al. Nano Energy, 2022, 93, 106891. 29 Lai M H, Du B L, Guo H Y, et al. ACS Applied Materials & Interfaces, 2018, 10(2), 2158. 30 Zhang P, Deng L, Zhang H, et al. Smart Materials and Structures, 2022, 31(11), 115026. 31 Sahu M, Vivekananthan V, Hajra S, et al. Applied Materials Today, 2021, 22, 100900. 32 Cheng X, Fan Z C, Yao S L, et al. Science, 2023, 379(6638), 1225. 33 Li J, Zhu J, Dong Z, et al. ChemistrySelect, 2023, 8(24), 202204487. 34 Yang W, Liu Y, Zhang Z, et al. Composites Science and Technology, 2023, 232, 109884. 35 Shin J, Ji S, Cho H, et al. Polymers, 2023, 15(5), 1135. 36 Wan H C, Cao Y Q, Lo L W, et al. Journal of Semiconductors, 2019, 40(11), 112601. 37 Fang X M, Qu L J, Tian M W. Modern Textile Technology, 2023, 31(4), 183 (in Chinese). 房翔敏, 曲丽君, 田明伟. 现代纺织技术, 2023, 31(4), 183. 38 Xia S Y, Long Y, Huang Z, et al. Nano Energy, 2022, 96, 107099. 39 Huang T, Long Y, Dong Z, et al. Advanced Science, 2022, 9(34), 2204519. 40 Lone S A, Lim K C, Kaswan K, et al. Nano Energy, 2022, 99, 107318. 41 Park J, Jo S, Kim Y, et al. Micromachines, 2022, 13(3), 380. 42 Shin S Y, Saravanakumar B, Ramadoss A, et al. International Journal of Energy Research, 2016, 40(3), 288. 43 Zhang W, Xi Y, Wang E, et al. ACS Applied Materials & Interfaces, 2022, 14(17), 20122. 44 Guo M L, Wang C, Yang Z C, et al. Electronics, 2022, 11(10), 1651. 45 Rahman M T, Rana S M S, Salauddin M, et al. Nano Energy, 2022, 100, 107454. 46 Salauddin M, Rana S M S, Rahman M T, et al. Advanced Functional Materials, 2021, 32(5), 2107143. 47 Hu Y, Shi Y, Cao X, et al. Nano Energy, 2021, 86, 106103. 48 Sun Q, Wang L, Yue X, et al. Nano Energy, 2021, 89, 106329. 49 Jiao J, Su Y, Wang C, et al. ACS Applied Energy Materials, 2023, 6(3), 1283. 50 Kim M, Kim H S. The Journal of the Textile Institute, 2023, 115(6), 939. 51 Przekop R E, Gabriel E, Pakula D, et al. Applied Sciences, 2023, 13(14), 8462. 52 Yu Z, Wang Y, Zheng J, et al. Nano Energy, 2020, 68, 104382. 53 Wu K, Kim K W, Kwon J H, et al. Journal of Industrial and Engineering Chemistry, 2023, 123, 272. 54 Li H, Li R, Fang X, et al. Nano Energy, 2019, 58, 447. 55 Qian C, Li L, Gao M, et al. Nano Energy, 2019, 63, 103885. 56 Guan X, Xu B, Wu M, et al. Nano Energy, 2021, 80, 105549. 57 Prasad G, Graham S A, Yu J S, et al. Nano Energy, 2023, 108, 108178. 58 Xia J, Zheng Z, Guo Y. Composites Part A:Applied Science and Manufacturing, 2022, 157, 106914. 59 Song X L, Peng W Q, Zhang Y, et al. Packaging Engineering, 2023, 44(17), 85 (in Chinese). 宋旭玲, 彭伟卿, 张叶, 等. 包装工程, 2023, 44(17), 85. 60 Yan J, Wang X Y, Zhu N, et al. Journal of Tiangong University, 2023, 42(2), 6 (in Chinese). 闫静, 望希言, 朱宁, 等. 天津工业大学学报, 2023, 42(2), 6. 61 Wang H, Sakamoto H, Asai H, et al. Nano Energy, 2021, 90, 106515. 62 Huang J, Fu X, Liu G, et al. Nano Energy, 2019, 62, 638. 63 Cheng G G, Jiang S Y, Li K, et al. Applied Surface Science, 2017, 412, 350. 64 Mohammadpour R. Advanced Engineering Materials, 2017, 20(5), 1700767. 65 Li T, Pan P, Yang Z C, et al. Journal of Materials Science, 2022, 57(12), 6723. 66 Prada T, Harnchana V, Lakhonchai A, et al. Nano Research, 2022, 15(1), 272. 67 Xu T, Sun Z, Fang J. Chinese Science Bulletin, 2024, 69(Z1), 565 (in Chinese). 徐婷, 孙哲, 方剑. 科学通报, 2024, 69(Z1), 565. 68 Zhang X Y, Xu X B. Chemical Fiber Textile Technology, 2023, 52(12), 108 (in Chinese). 张欣颜, 许旭兵. 化纤与纺织技术, 2023, 52(12), 108. 69 Liu Z, Li H, Shi B, et al. Advanced Functional Materials, 2019, 29(20), 1808820. 70 Wang W J, Zheng L M, Cheng H Y, et al. Chinese Science Bulletin, 2023, 68(34), 4630 (in Chinese). 王文君, 郑丽敏, 程泓宇, 等. 科学通报, 2023, 68(34), 4630. 71 Wu F, Lan B, Cheng Y, et al. Nano Energy, 2022, 101, 107588. 72 Li Z, Xu B, Han J, et al. Advanced Functional Materials, 2021, 32(6), 2106731. 73 Wang G, Liu X, Wang Y, et al. Advanced Materials Technologies, 2022, 8(3), 2200973. 74 Jiang Y, An J, Liang F, et al. Nano Research, 2022, 15(9), 8389. 75 Zhang X, Tang S, Ma R, et al. Nano Energy, 2022, 103, 107778. 76 Sun P, Cai N, Zhong X, et al. Nano Energy, 2021, 89, 106492. 77 Sahu M, Hajra S, Panda S, et al. Nano Energy, 2022, 97, 107208. 78 Niu L, Peng X, Chen L, et al. Nano Energy, 2022, 97, 107168. 79 Ye C, Yang S, Ren J, et al. ACS Nano, 2022, 16(3), 4415. 80 Park D, Hong J H, Choi D, et al. Nano Energy, 2022, 96, 107091. 81 Luo C, Shao Y, Yu H, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(39), 13050. 82 Li M, Xu B, Li Z, et al. Chemical Engineering Journal, 2022, 450, 137491. 83 Cao Y, Shao H, Wang H, et al. Energy Conversion and Management, 2022, 267, 115910. 84 Yu B, Zhou L, Zhang X, et al. Nano Energy, 2023, 106, 108058. 85 Rajabi-abhari A, Lee J, Tabassian R, et al. Small, 2022, 18(20), 2107638. 86 Shen H, Lei H, Gu M, et al. Advanced Functional Materials, 2022, 32(34), 2204525. 87 Zheng C, Li W, Shi Y, et al. Nano Energy, 2023, 109, 108245. 88 Wang M, Zhang J, Tang Y, et al. ACS Nano, 2018, 12(6), 6156. 89 Hu S, Weber J, Chang S, et al. Advanced Materials Technologies, 2022, 7(9), 2200186. 90 Zhu J, Zeng Y, Luo Y, et al. ACS Nano, 2022, 16(8), 11884.