Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24060041-9    https://doi.org/10.11896/cldb.24060041
  高分子与聚合物基复合材料 |
可穿戴摩擦电纳米发电机:机理、结构与应用
姚文涛1, 李春红1, 孙悦1, 郑意德2, 李伟1,*, 郭增革1,*
1 山东理工大学鲁泰纺织服装学院,山东 淄博 255000
2 盐城工学院纺织服装学院,江苏 盐城 224051
Wearable Triboelectric Nanogenerator:Mechanism,Structure and Applications
YAO Wentao1, LI Chunhong1, SUN Yue1, ZHENG Yide2, LI Wei1,*, GUO Zengge1,*
1 Luthai School of Textile and Apparel, Shandong University of Technology, Zibo 255000, Shandong, China
2 College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China
下载:  全 文 ( PDF ) ( 38098KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 科技的快速发展,引领了智能化的普及,大众对柔性可穿戴产品有了更多功能化的追求。目前,大部分柔性器件无法脱离电源单独使用,限制了器件的发展,在此需求的推动下,摩擦电纳米发电机(TENG)的发展受到广泛关注。其能量来源广泛,可从风、海洋等自然环境下获得,也可从人体运动中获取,并具有高灵敏度、形态多样、体积小和成本低等优点。本文聚焦于TENG的机理、结构与应用领域,以机理为导向,详细介绍了TENG的四种工作模式,系统整理了TENG在提高性能方面的结构设计,主要包括整体结构设计与界面结构设计及其优化方案,分析了不同的结构设计对电信号输出的影响,最后对TENG作为直接或间接可穿戴器件的实际应用领域进行了介绍,并指出了TENG的缺点以及未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚文涛
李春红
孙悦
郑意德
李伟
郭增革
关键词:  摩擦电  自供电  传感器  可持续性  可穿戴  纳米技术    
Abstract: The rapid development of science and technology has led to the popularization of intelligence. Users have more functional pursuit for flexible wearable products. At present, most of the flexible devices can not be used without power supply. It limits the development of devices. Dri-ven by this demand, the development of triboelectric nanogenerator (TENG) has attracted much attention. It has a wide range of energy sources, which include wind, ocean, and human movement. In addition, it has the advantages of high sensitivity, diverse morphology, small size and low cost. This paper focuses on the mechanism, structure and application of TENG. Firstly, based on the mechanism, four TENG wor-king modes are introduced in detail. Secondly, the structure design of TENG in improving performance is systematized. It mainly includes 3D structure design, interface structure design and optimization scheme, and analyzes the influence of different structure design on electrical signal output. Then, the practical application fields of TENG as a direct or indirect wearable device are introduced. Finally, it points out the shortcomings of TENG and the future development direction.
Key words:  triboelectric    self-powered    sensor    sustainability    wearable    nanotechnology
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TM619  
基金资助: 山东省自然科学基金(ZR2020QE095)
通讯作者:  *李伟,博士,山东理工大学鲁泰纺织服装学院讲师,硕士研究生导师。目前主要从事柔性纳米材料、智能可穿戴等方面的研究。lweiyuanb@163.com
郭增革,博士,山东理工大学鲁泰纺织服装学院副教授,硕士研究生导师。主要研究方向为纺织新材料、新工艺、新技术。guozengge@sdut.edu.cn   
作者简介:  姚文涛,山东理工大学鲁泰纺织服装学院硕士研究生,在李春红和李伟老师的指导下开展柔性智能可穿戴器件的研究。
引用本文:    
姚文涛, 李春红, 孙悦, 郑意德, 李伟, 郭增革. 可穿戴摩擦电纳米发电机:机理、结构与应用[J]. 材料导报, 2025, 39(19): 24060041-9.
YAO Wentao, LI Chunhong, SUN Yue, ZHENG Yide, LI Wei, GUO Zengge. Wearable Triboelectric Nanogenerator:Mechanism,Structure and Applications. Materials Reports, 2025, 39(19): 24060041-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060041  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24060041
1 Shen J, Li B, Yang Y, et al. Biosensors and Bioelectronics, 2022, 216, 114595.
2 Dong K, Tang W. Science China Technological Sciences, 2023, 53(6), 953 (in Chinese).
董凯, 唐伟. 中国科学:技术科学, 2023, 53(6), 953.
3 Xiong Y, Luo L, Yang J, et al. Nano Energy, 2023, 107, 108137.
4 Fan F R, Tian Z Q, Lin W Z. Nano Energy, 2012, 1(2), 328.
5 An X, Wang C, Shao R, et al. International Journal of Smart and Nano Materials, 2021, 12(3), 233.
6 Korkmaz S, Kariper A. Synthetic Metals, 2021, 273, 116692.
7 Gunawardhana K R S D, Wanasekara N D, Dharmasena R D I G. iScience, 2020, 23(8), 101360.
8 Jiang C, Li X, Ying Y, et al. Nano Energy, 2020, 74, 104863.
9 Kim D Y, Kim H S, Kong D S, et al. Nano Energy, 2018, 45, 247.
10 Lu Q, Sun M, Huang B, et al. Advanced Energy and Sustainability Research, 2021, 2(4), 2000087.
11 Dassanayaka D G, Alves T M, Wanasekara N D, et al. Advanced Functional Materials, 2022, 32(44), 2205438.
12 Xu Z A, Wu Y M, Guo H, et al. Journal of Textile Engineering, 2023, 1(6), 71 (in Chinese).
许子傲, 吴雅梦, 郭浩, 等. 纺织工程学报, 2023, 1(6), 71.
13 Wei Y, Zu G, Sun C, et al. Langmuir, 2023, 39(11), 4060.
14 Wang S, Gao J, Lu F, et al. Nano Energy, 2023, 108, 108230.
15 Vazquez-lopez A, Del rio saez J S, De la vega J, et al. ACS Sensors, 2023, 8(4), 1684.
16 Pu X, Zhang C, Wang Z L. National Science Review, 2023, 10(1), 28.
17 Dong K, Hu Y, Yang J, et al. MRS Bulletin, 2021, 46(6), 512.
18 Li T, Wei H, Zhang Y, et al. Carbohydrate Polymers, 2023, 309, 120678.
19 Zou J, Jing X, Chen Z, et al. Advanced Functional Materials, 2023, 33(15), 2213895.
20 Zhang M R, Gao G W. Transducer and Microsystem Technologies, 2023, 42(12), 1 (in Chinese).
张明叡, 高国伟. 传感器与微系统, 2023, 42(12), 1.
21 Liu W N, Zhang Z J. Tianjin Paper Making, 2023, 45(1), 26 (in Chinese).
刘文娜, 张正健. 天津造纸, 2023, 45(1), 26.
22 Han W J. Triboelectric joint sensors and their application in knee walking aids. Master's Thesis, Nanjing University of Posts and Telecommunications, China, 2023 (in Chinese).
韩文杰. 摩擦电关节传感器及其在膝关节助力装置中应用的研究. 硕士学位论文, 南京邮电大学, 2023.
23 Kim W G, Kim D W, Tcho I W, et al. ACS Nano, 2021, 15(1), 258.
24 Elsanadidy E, Mosa I M, Luo D, et al. Advanced Functional Materials, 2023, 33(8), 2211177.
25 Zhao Z, Lu Y, Mi Y, et al. Micromachines, 2022, 13(10), 1586.
26 Wang C, Guo H, Wang P, et al. Advanced Materials, 2023, 35(17), 2209895.
27 Kim J Y, Kaganovich I, Lee H C. Plasma Sources Science and Technology, 2022, 31(3), 033001.
28 Cao Z, Wu Z, Ding R, et al. Nano Energy, 2022, 93, 106891.
29 Lai M H, Du B L, Guo H Y, et al. ACS Applied Materials & Interfaces, 2018, 10(2), 2158.
30 Zhang P, Deng L, Zhang H, et al. Smart Materials and Structures, 2022, 31(11), 115026.
31 Sahu M, Vivekananthan V, Hajra S, et al. Applied Materials Today, 2021, 22, 100900.
32 Cheng X, Fan Z C, Yao S L, et al. Science, 2023, 379(6638), 1225.
33 Li J, Zhu J, Dong Z, et al. ChemistrySelect, 2023, 8(24), 202204487.
34 Yang W, Liu Y, Zhang Z, et al. Composites Science and Technology, 2023, 232, 109884.
35 Shin J, Ji S, Cho H, et al. Polymers, 2023, 15(5), 1135.
36 Wan H C, Cao Y Q, Lo L W, et al. Journal of Semiconductors, 2019, 40(11), 112601.
37 Fang X M, Qu L J, Tian M W. Modern Textile Technology, 2023, 31(4), 183 (in Chinese).
房翔敏, 曲丽君, 田明伟. 现代纺织技术, 2023, 31(4), 183.
38 Xia S Y, Long Y, Huang Z, et al. Nano Energy, 2022, 96, 107099.
39 Huang T, Long Y, Dong Z, et al. Advanced Science, 2022, 9(34), 2204519.
40 Lone S A, Lim K C, Kaswan K, et al. Nano Energy, 2022, 99, 107318.
41 Park J, Jo S, Kim Y, et al. Micromachines, 2022, 13(3), 380.
42 Shin S Y, Saravanakumar B, Ramadoss A, et al. International Journal of Energy Research, 2016, 40(3), 288.
43 Zhang W, Xi Y, Wang E, et al. ACS Applied Materials & Interfaces, 2022, 14(17), 20122.
44 Guo M L, Wang C, Yang Z C, et al. Electronics, 2022, 11(10), 1651.
45 Rahman M T, Rana S M S, Salauddin M, et al. Nano Energy, 2022, 100, 107454.
46 Salauddin M, Rana S M S, Rahman M T, et al. Advanced Functional Materials, 2021, 32(5), 2107143.
47 Hu Y, Shi Y, Cao X, et al. Nano Energy, 2021, 86, 106103.
48 Sun Q, Wang L, Yue X, et al. Nano Energy, 2021, 89, 106329.
49 Jiao J, Su Y, Wang C, et al. ACS Applied Energy Materials, 2023, 6(3), 1283.
50 Kim M, Kim H S. The Journal of the Textile Institute, 2023, 115(6), 939.
51 Przekop R E, Gabriel E, Pakula D, et al. Applied Sciences, 2023, 13(14), 8462.
52 Yu Z, Wang Y, Zheng J, et al. Nano Energy, 2020, 68, 104382.
53 Wu K, Kim K W, Kwon J H, et al. Journal of Industrial and Engineering Chemistry, 2023, 123, 272.
54 Li H, Li R, Fang X, et al. Nano Energy, 2019, 58, 447.
55 Qian C, Li L, Gao M, et al. Nano Energy, 2019, 63, 103885.
56 Guan X, Xu B, Wu M, et al. Nano Energy, 2021, 80, 105549.
57 Prasad G, Graham S A, Yu J S, et al. Nano Energy, 2023, 108, 108178.
58 Xia J, Zheng Z, Guo Y. Composites Part A:Applied Science and Manufacturing, 2022, 157, 106914.
59 Song X L, Peng W Q, Zhang Y, et al. Packaging Engineering, 2023, 44(17), 85 (in Chinese).
宋旭玲, 彭伟卿, 张叶, 等. 包装工程, 2023, 44(17), 85.
60 Yan J, Wang X Y, Zhu N, et al. Journal of Tiangong University, 2023, 42(2), 6 (in Chinese).
闫静, 望希言, 朱宁, 等. 天津工业大学学报, 2023, 42(2), 6.
61 Wang H, Sakamoto H, Asai H, et al. Nano Energy, 2021, 90, 106515.
62 Huang J, Fu X, Liu G, et al. Nano Energy, 2019, 62, 638.
63 Cheng G G, Jiang S Y, Li K, et al. Applied Surface Science, 2017, 412, 350.
64 Mohammadpour R. Advanced Engineering Materials, 2017, 20(5), 1700767.
65 Li T, Pan P, Yang Z C, et al. Journal of Materials Science, 2022, 57(12), 6723.
66 Prada T, Harnchana V, Lakhonchai A, et al. Nano Research, 2022, 15(1), 272.
67 Xu T, Sun Z, Fang J. Chinese Science Bulletin, 2024, 69(Z1), 565 (in Chinese).
徐婷, 孙哲, 方剑. 科学通报, 2024, 69(Z1), 565.
68 Zhang X Y, Xu X B. Chemical Fiber Textile Technology, 2023, 52(12), 108 (in Chinese).
张欣颜, 许旭兵. 化纤与纺织技术, 2023, 52(12), 108.
69 Liu Z, Li H, Shi B, et al. Advanced Functional Materials, 2019, 29(20), 1808820.
70 Wang W J, Zheng L M, Cheng H Y, et al. Chinese Science Bulletin, 2023, 68(34), 4630 (in Chinese).
王文君, 郑丽敏, 程泓宇, 等. 科学通报, 2023, 68(34), 4630.
71 Wu F, Lan B, Cheng Y, et al. Nano Energy, 2022, 101, 107588.
72 Li Z, Xu B, Han J, et al. Advanced Functional Materials, 2021, 32(6), 2106731.
73 Wang G, Liu X, Wang Y, et al. Advanced Materials Technologies, 2022, 8(3), 2200973.
74 Jiang Y, An J, Liang F, et al. Nano Research, 2022, 15(9), 8389.
75 Zhang X, Tang S, Ma R, et al. Nano Energy, 2022, 103, 107778.
76 Sun P, Cai N, Zhong X, et al. Nano Energy, 2021, 89, 106492.
77 Sahu M, Hajra S, Panda S, et al. Nano Energy, 2022, 97, 107208.
78 Niu L, Peng X, Chen L, et al. Nano Energy, 2022, 97, 107168.
79 Ye C, Yang S, Ren J, et al. ACS Nano, 2022, 16(3), 4415.
80 Park D, Hong J H, Choi D, et al. Nano Energy, 2022, 96, 107091.
81 Luo C, Shao Y, Yu H, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(39), 13050.
82 Li M, Xu B, Li Z, et al. Chemical Engineering Journal, 2022, 450, 137491.
83 Cao Y, Shao H, Wang H, et al. Energy Conversion and Management, 2022, 267, 115910.
84 Yu B, Zhou L, Zhang X, et al. Nano Energy, 2023, 106, 108058.
85 Rajabi-abhari A, Lee J, Tabassian R, et al. Small, 2022, 18(20), 2107638.
86 Shen H, Lei H, Gu M, et al. Advanced Functional Materials, 2022, 32(34), 2204525.
87 Zheng C, Li W, Shi Y, et al. Nano Energy, 2023, 109, 108245.
88 Wang M, Zhang J, Tang Y, et al. ACS Nano, 2018, 12(6), 6156.
89 Hu S, Weber J, Chang S, et al. Advanced Materials Technologies, 2022, 7(9), 2200186.
90 Zhu J, Zeng Y, Luo Y, et al. ACS Nano, 2022, 16(8), 11884.
[1] 朱文虎, 孙奉琳, 王蓉, JOO SangWoo, 丛晨浩, 李欣琳. 基于丝网印刷制备的导电水凝胶基可拉伸应变传感器[J]. 材料导报, 2025, 39(7): 24010128-6.
[2] 秦博, 鲁盛会, 刘思涵, 张洁, 龙斌. 面向材料腐蚀防护的铅铋合金氧测氧控研究进展[J]. 材料导报, 2025, 39(4): 24020123-12.
[3] 侯明玥, 姚日晖, 罗东向, 郑华, 刘贤哲, 黎振超, 蔡炜, 宁洪龙, 彭俊彪. 可穿戴电子用前驱体型银墨水研究进展[J]. 材料导报, 2025, 39(4): 23110204-11.
[4] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[5] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[6] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[7] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[8] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[9] 张会琪, 徐宇, 缪妙, 刘紫琛, 刘贤哲, 黄爱萍, 罗坚义. 柔性电容式压力传感器:聚合物介电材料、微结构及应用[J]. 材料导报, 2025, 39(14): 24050081-11.
[10] 王浩宇, 郭焱, 周玉刚, 陈敦军, 张荣, 郑有炓. AlGaN/GaN高电子迁移率晶体管传感器的栅极功能化处理方法综述[J]. 材料导报, 2025, 39(13): 24050011-10.
[11] 邵艳秋, 任婷, 王迪, 姬旭, 柳林, 杨荟, 杨皓婷, 张吉振, 陶金龙, 孔娜. 可印刷柔性传感器在人体健康监测中的研究进展[J]. 材料导报, 2025, 39(12): 23120167-9.
[12] 应智业, 乔宇庭, 刘秉鑫, 乔丽娟. 氮化碳纳米棒簇的构筑及对抗坏血酸传感性能研究[J]. 材料导报, 2025, 39(11): 24030156-7.
[13] 蒋旭, 张峻博, 代朝猛, 李继香, 李质, 买买提江·买斯德克, 张亚雷, 付融冰. 分子印迹技术在地下水修复中的应用研究进展[J]. 材料导报, 2025, 39(10): 23080119-6.
[14] 张荣振, 柏浩. 用于可穿戴热管理的智能纤维及织物[J]. 材料导报, 2025, 39(1): 24080088-11.
[15] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed