Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050011-10    https://doi.org/10.11896/cldb.24050011
  无机非金属及其复合材料 |
AlGaN/GaN高电子迁移率晶体管传感器的栅极功能化处理方法综述
王浩宇, 郭焱, 周玉刚*, 陈敦军, 张荣, 郑有炓
南京大学电子科学与工程学院江苏省光电信息功能材料重点实验室,南京 210023
A Technological Review on Gate Functionalization for AlGaN/GaN High Electron Mobility Transistor Sensors
WANG Haoyu, GUO Yan, ZHOU Yugang*, CHEN Dunjun, ZHANG Rong, ZHENG Youdou
Jiangsu Key Laboratory of Optoelectronic Information Functional Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
下载:  全 文 ( PDF ) ( 12431KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 半导体场效应晶体管(FET)在传感器中的应用是当前传感领域的热门研究方向之一。以AlGaN/GaN高电子迁移率晶体管(HEMT)等为代表,FET传感器在检测限、灵敏度、特异性和操作便捷性等方面均优势明显,且易于集成化。器件传感表面的功能化处理是器件制造的核心工艺之一,是场效应晶体管传感器后续发展的重要方向。本文综述了国内外基于AlGaN/GaN HEMT的传感器栅极功能化处理方法的研究进展,分别对气体、溶液离子和生物物质检测等常用的处理方法进行了介绍,并指出了一些现有处理手段中存在的局限性,展望了未来相关研究的部分发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王浩宇
郭焱
周玉刚
陈敦军
张荣
郑有炓
关键词:  高电子迁移率晶体管  栅极功能化处理  气体探测  离子敏传感器  生物传感    
Abstract: The application of semiconductor field effect transistors (FETs) in sensors is one of the hottest research topics in the field of sensing. As represented by AlGaN/GaN high electron mobility transistors (HEMTs), FET sensors have obvious advantages in terms of detection limit, sensitivity, specificity, and ease of operation and integration. As the core technique in the device fabrication, the functionalization of the devices plays an important role in realizing the above functions and advantages, which also has great potential for the subsequent development of devices. This review summarizes the domestic and foreign research progress of the gate functionalization methods of AlGaN/GaN HEMT-based sensors for detecting gas, solution ions, and biological substances separately. Finally, we point out the limitations and shortcomings of some existing treatment methods, and look forward to some aspects of future research.
Key words:  high electron mobility transistor    gate functionalization processing    gas detection    ion-sensitive field-effect transistor    biosensing
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TN386  
基金资助: 江苏省重点研发计划产业前瞻与关键核心技术项目(BE2022070-4)
通讯作者:  *周玉刚,博士,南京大学电子科学与工程学院教授、博士研究生导师。目前主要从事GaN基半导体材料与器件、深紫外LED与Micro-LED,以及光电器件异质集成等方面的研究工作。ygzhou@nju.edu.cn   
作者简介:  王浩宇,南京大学电子科学与工程学院硕士研究生,在周玉刚教授的指导下进行研究。目前主要研究领域为基于AlGaN/GaN HEMT结构的传感器。
引用本文:    
王浩宇, 郭焱, 周玉刚, 陈敦军, 张荣, 郑有炓. AlGaN/GaN高电子迁移率晶体管传感器的栅极功能化处理方法综述[J]. 材料导报, 2025, 39(13): 24050011-10.
WANG Haoyu, GUO Yan, ZHOU Yugang, CHEN Dunjun, ZHANG Rong, ZHENG Youdou. A Technological Review on Gate Functionalization for AlGaN/GaN High Electron Mobility Transistor Sensors. Materials Reports, 2025, 39(13): 24050011-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050011  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050011
1 Kang B S, Wang H T, Ren F, et al.Journal of Applied Physics, 2008, 104(3), 031101.
2 Fauzi N, Kawarada H, Falina S, et al.Micromachines, 2023, 14(2), 325.
3 Bhat A M, Poonia R, Varghese A, et al.Micro and Nanostructures, 2023, 176, 207528.
4 Zhu Y X, Wang Y H, Song H H, et al.Chinese Journal of Luminescence, 2016, 37(12), 1545.
5 Ajayan J, Nirmal D, Ramesh R, et al.Measurement, 2021, 186, 110100.
6 Xi Y Y, Liu L, Ren F, et al.Journal of Vacuum Science & Technology B, 2013, 31(3), 032203.
7 Lei F F, Chu J F, Liu Y, et al.Transactions of China Electrotechnical Society,2023, 38(13), 3651 (in Chinese).
雷芳菲, 褚继峰, 刘洋, 等. 电工技术学报, 2023, 38(13), 3651.
8 Schalwig J, Müller G, Ambacher O, et al.Physica Status Solidi A, 2001, 185(1), 39.
9 Schalwig J, Müller G, Eickhoff M, et al.Sensors and Actuators B, 2002, 87(3), 425.
10 Feng C, Wang X L, Yang C B, et al.Semiconductor Technology, 2008, 33(S1), 193 (in Chinese).
冯春, 王晓亮, 杨翠柏, 等. 半导体技术, 2008, 33(S1), 193.
11 Ranjan A, Agrawal M, Radhakrishnan K, et al.International Journal of Nanotechnology, 2020, 17(1), 16.
12 Shen B W, Luo J T, Xie Y Z, et al.Applied Physics Letters, 2019, 115(25), 254104.
13 Zhong A H, Sun A F, Shen B W, et al.International Journal of Hydrogen Energy, 2022, 47(3), 2050.
14 Kim H, Jang S.Current Applied Physics, 2013, 13(8), 1746.
15 Kim S E, Jang S Y, Park K H, et al.Ceramics International, 2022, 48(16), 23590.
16 Nguyen V C, Cha H Y, Kim H.Sensors, 2023, 23(7), 3465.
17 Halfaya Y, Alrammouz R, Lazerges M, et al. In:20th IEEE Sensors Conference. Electr Network, 2021, pp. 47087.
18 Hung S T, Chang C J, Hsu C H, et al.International Journal of Hydrogen Energy, 2012, 37(18), 13783.
19 Hung S T, Chang C J, Chen C C, et al.Journal of Vacuum Science & Technology B, 2012, 30(4), 041214.
20 Fan M Y, Wang Q, Zheng H Z, et al.Sensors and Actuators B, 2022, 359, 131556.
21 Lo C F, Xi Y Y, Liu L, et al.Sensors and Actuators B, 2013, 176, 708.
22 Kang B S, Kim S, Ren F, et al. In:International Workshop on Nitrides Semiconductors. Pittsburgh, 2004, pp. 2672.
23 Ryger I, Vanko G, Lalinsky T, et al. In:3rd International Conference on Materials and Applications for Sensors and Transducers. Prague, 2013, pp. 491.
24 Ahn J, Kim D, Park K H, et al.IEEE Transactions on Electron Devices, 2021, 68(3), 1255.
25 Sharma N, Kumar S, Gupta A, et al.Sensors and Actuators A, 2022, 342, 113647.
26 Liu L T, Zhang H Q, Xu R L, et al.Materials Research Bulletin, 2023, 162, 112186.
27 Bergveld P.Sensors and Actuators, 1981, 1(1), 17.
28 Podolska A, Kocan M, Keller S, et al.Applied Physics Letters, 2010, 97(1), 012108.
29 Sharifabad M E, Hashim A M, Sadoh T, et al.Sensors, 2011, 11(3), 3067.
30 Guo Z B, Wang L, Hao Z B, et al.Procedia Engineering,2012, 27, 693.
31 Podolska A, Broxtermann D, Malindretos J, et al.IEEE Sensors Journal, 2015, 15(9), 5320.
32 Wang H T, Kang B S, Chancellor T F, et al.Electrochemical and Solid State Letters, 2007, 10(11), J150.
33 Wang H T, Kang B S, Chancellor T F, et al.Applied Physics Letters, 2007, 91(4), 042114.
34 Hung S C, Wang Y L, Hicks B, et al.Electrochemical and Solid State Letters, 2008, 11(9), H241.
35 Cheng J J, Li J D, Miao B, et al.Applied Physics Letters, 2014, 105(8), 083121.
36 Nigam A, Bhat T N, Bhati V S, et al.IEEE Sensors Journal, 2019, 19(8), 2863.
37 Nigam A, Tripathy S, Kumar M, et al.IEEE Electron Device Letters, 2019, 40(12), 1976.
38 Jiang X C, Wei C L, Gu Y, et al.Applied Physics A, 2022, 128(12), 1108.
39 Gu Y, Jiang X C, Lu N Y, et al.IEEE Journal of the Electron Devices Society, 2023, 11, 518.
40 Alifragis Y, Volosirakis A, Konstantinidis G, et al.Biosensors & Bioelectronics, 2007, 22(12), 2796.
41 Alifragis Y, Volosirakis A, Georgakilas A, et al.Physica Status Solidi a-Applications and Materials Science, 2007, 204(6), 2059.
42 Myers M, Podolska A, Nener B, et al.Sensors and Actuators B, 2013, 181, 301.
43 Asadnia M, Myers M, Parish G, et al.Analytica Chimica Acta, 2017, 987, 105.
44 Jia X L, Chen D J, Liu B, et al.Scientific Reports, 2016, 6, 27728.
45 Chu B H, Lin H W, Gwo S, et al.Journal of Vacuum Science & Techno-logy B, 2010, 28(1), L5.
46 Sharma N, Nigam A, Gupta A, et al.Nanotechnology, 2022, 33(26), 265501.
47 Nigam A, Kumar M. In:64th DAE Solid State Physics Symposium. Ijodhpur, 2019, pp. 030216.
48 Sharma N, Nigam A, Lobanov D, et al.IEEE Internet of Things Journal, 2022, 9(16), 14317.
49 Chu B H, Kang B S, Ren F, et al.Applied Physics Letters, 2008, 93(4), 042114.
50 Makowski M S, Bryan I, Sitar Z, et al.Applied Physics Letters, 2013, 103(8), 089902.
51 Makowski M S, Kim S, Gaillard M, et al.Applied Physics Letters, 2013, 102(7), 074102.
52 Li J D, Cheng J J, Miao B, et al.Journal of Micromechanics and Microengineering, 2014, 24(7), 075023.
53 Gu Z Q, Wang J, Miao B, et al.RSC Advances, 2019, 9(27), 15341.
54 Müntze G M, Pouokam E, Steidle J, et al.Biosensors & Bioelectronics, 2016, 77, 1048.
55 Chang C W, Chen P H, Wang S H, et al.Sensors and Actuators B, 2018, 267, 191.
56 Liu J, Zhang H Q, Xue D Y, et al.RSC Advances, 2020, 10(19), 11393.
57 Liu J, Zhang H Q, Xia X C, et al.Sensors and Actuators A, 2020, 312, 112128.
58 Hu S J, Jiang X C, Yang L, et al.Biosensors (Basel), 2023, 13(8), 831.
59 Wang H T, Kang B S, Ren F, et al.Applied Physics Letters, 2007, 91(22), 222101.
60 Chen K H, Kang B S, Wang H T, et al.Applied Physics Letters, 2008, 92(19), 192103.
61 Lee H H, Bae M, Jo S H, et al.Sensors and Materials, 2015, 27(7), 575.
62 Chaturvedi N, Chowdhury R, Mishra S, et al.Semiconductor Science and Technology, 2021, 36(4), 045018.
63 Mishra S, Kachhawa P, Chaturvedi N, et al.Lab on a Chip, 2022, 22(21), 4129.
64 Kachhawa P, Mishra S, Tripura C, et al.IEEE Sensors Journal, 2022, 22(7), 6256.
65 Tulip F S, Eteshola E, Desai S, et al.IEEE Transactions on Nanobioscience, 2014, 13(2), 138.
66 Yang S, Gu L, Ding X Z, et al.IEEE Electron Device Letters, 2018, 39(10), 1592.
67 Mishra S, Kachhawa P, Mondal P, et al.IEEE Transactions on Electron Devices, 2022, 69(8), 4527.
68 He Y, Chen K Y, Wang T T, et al.IEEE Transactions on Electron Devices, 2023, 70(4), 1860.
[1] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[2] 孙青月, 余涛, 彭双凤, 孔德昭, 刘畅, 史巧巧, 李雅琪, 陈勇. 荧光生物传感器用于多种真菌毒素同时检测的研究进展[J]. 材料导报, 2024, 38(10): 22090139-11.
[3] 李佳炜, 朱宏伟. 纳米材料在病毒检测中的应用研究进展[J]. 材料导报, 2023, 37(6): 21070090-11.
[4] 肖萍萍, 张国军, 孙忠月. 仿生固态纳米孔在生物传感中的应用进展[J]. 材料导报, 2022, 36(8): 20080071-11.
[5] 刘志伟, 童朝阳, 杜斌, 汪将, 刘帅. 四面体DNA核酸适体生物传感器构建方法及应用[J]. 材料导报, 2022, 36(24): 21050199-6.
[6] 吴江松, 谭彦妮, 刘晏军. 羟基磷灰石在传感领域应用的研究进展[J]. 材料导报, 2022, 36(20): 20090296-13.
[7] 李静芝, 高志贤, 李双, 赵旭东, 秦英凯, 刘辉, 韩铁. 上转换纳米颗粒的发光机理、制备及生物应用进展[J]. 材料导报, 2022, 36(14): 20110168-11.
[8] 陈达, 刘美含, 张伟, 练美玲. 具有类过氧化物酶活性的纳米材料在比色分析中的研究进展[J]. 材料导报, 2022, 36(13): 20090055-14.
[9] 徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(z2): 285-293.
[10] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[11] 刘文清, 张涛. 细菌视紫红质在生物传感器中的应用进展[J]. 材料导报, 2021, 35(23): 23171-23182.
[12] 戈明亮, 李越颖, 梁国栋. 纳米酶在传感检测中的应用研究进展[J]. 材料导报, 2021, 35(19): 19195-19203.
[13] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[14] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[15] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed