Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24020123-12    https://doi.org/10.11896/cldb.24020123
  金属与金属基复合材料 |
面向材料腐蚀防护的铅铋合金氧测氧控研究进展
秦博1,2, 鲁盛会1, 刘思涵1, 张洁1, 龙斌1,2,*
1 中国原子能科学研究院反应堆工程技术研究所,北京 102413
2 国家原子能机构核材料创新中心,北京 102413
Progress on the Development of Measurement and Control of Dissolved Oxygen in Lead-Bismuth Alloy for the Materials Corrosion Protection
QIN Bo1,2, LU Shenghui1, LIU Sihan1, ZHANG Jie1, LONG Bin1,2,*
1 Department of Reactor Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
2 Innovation Center of Nuclear Materials, China Atomic Energy Authority, Beijing 102413, China
下载:  全 文 ( PDF ) ( 60020KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铅铋合金具有优异的核性能、高导热率、高沸点和化学惰性等特点,以其作为冷却剂的铅铋快中子增殖反应堆是最具发展前景的第四代先进核能系统的六种堆型之一。铅铋合金冷却剂对反应堆结构材料较强的腐蚀性是限制铅铋快堆发展的重要因素;然而,控制铅铋合金中溶解氧在特定的范围是实施结构材料在液态铅铋环境下腐蚀防护的有效手段之一,因此要求铅铋系统必须实现溶解氧的测量与控制,以保障反应堆的安全运行。近年来,随着铅铋快堆研发的深入,材料腐蚀防护关键共性技术不断突破,本文总结了面向反应堆结构材料腐蚀防护的铅铋溶解氧测量和控制技术研究进展,介绍了铅铋合金氧测氧控国内外研究现状,重点对比分析了不同氧控模式在铅铋快堆的应用前景,最后对面向铅铋快堆的氧测氧控技术的发展及应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦博
鲁盛会
刘思涵
张洁
龙斌
关键词:  铅铋合金  溶解氧  氧控  氧传感器  标定  腐蚀    
Abstract: Because of the excellent nuclear property, high thermal conductivity, high boiling point and chemical inertness of lead-bismuth alloy, the lead-bismuth fast breeder reactor, which use lead-bismuth alloy as the coolant, is one of the promising development prospects of Generation Ⅳ six type of reactors. Lead-bismuth eutectic (LBE) coolant is corrosive to reactor structural materials, which is an important factor limiting the development of LBE cooled reactor. Oxygen dissolved into LBE controlled in a certain range is one of the effective approaches to carry out corrosion protection of structural materials in LBE environment, so it is required that the oxygen dissolved in lead-bismuth system must be controllable and measurable to ensure the safe operation of the reactor. In recent years, with the development of LBE cooled reactor, the key common technologies on material corrosion protection continue to break through. This paper summarizes the research progress of dissolved oxygen measurement and control technology for reactor structural materials corrosion protection, introduces the research status of oxygen measurement and oxygen control at home and abroad, and focuses on the comparison and analysis of the application prospects of different oxygen control modes for LBE cooled fast reactor. Finally, the development and application of oxygen measurement and control technology for lead-bismuth fast reactor are prospected.
Key words:  lead-bismuth alloy    solved oxygen    oxygen control    oxygen sensor    calibration    corrosion
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TL34  
基金资助: 国家自然科学基金(U2067219);中核集团基础研究项目(FJ222508000702)
通讯作者:  *龙斌,博士,中国原子能科学研究院研究员,核工业研究生院教授,主要从事反应堆结构材料以及快堆液态金属冷却剂技术研究。binlong@ciae.ac.cn   
作者简介:  秦博,博士,正高级工程师。现就职于中国原子能科学研究院,从事铅铋合金工艺技术、铅铋合金材料腐蚀及腐蚀防护和铅铋合金实验装置运行技术研究等工作。
引用本文:    
秦博, 鲁盛会, 刘思涵, 张洁, 龙斌. 面向材料腐蚀防护的铅铋合金氧测氧控研究进展[J]. 材料导报, 2025, 39(4): 24020123-12.
QIN Bo, LU Shenghui, LIU Sihan, ZHANG Jie, LONG Bin. Progress on the Development of Measurement and Control of Dissolved Oxygen in Lead-Bismuth Alloy for the Materials Corrosion Protection. Materials Reports, 2025, 39(4): 24020123-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020123  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24020123
1 Abram T, Ion S. Energy Policy, 2008, 36, 4323.
2 Wan J S, Zhang Y, Zhang L X, et al. Chinese Journal of Computational Physics, 2003, 20(5), 408 (in Chinese).
万俊生, 张颖, 张利兴, 等. 计算物理, 2003, 20(5), 408.
3 Gorynin I V, Karzov G P, Markov V G, et al. In: Proceedings of Heavy Liquid Metal Coolants in Nuclear Technology (HLMC-98). Obninsk, 1998, pp. 120.
4 Zhang J S. Journal of Apploed Electrochemistry, 2013, 43, 755.
5 Lee S H, Cho C H, Song T Y, et al. Portugaliae Electrochinica Acta, 2008, 26(6), 559.
6 OECD. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technoloties, 2015, pp. 213.
7 Schroer C, Knoys J. Physical chemistry of corrosion and oxygen control in liquid lead and lead-bismuth eutectic. FZKA 7364, 2007.
8 Courouau J L. Journal of Nuclear Materials, 2004, 335, 254.
9 Martynov P N, Chernov M E, Gulevskii V A, et al. Atomic Energy, 2005, 98(5), 343.
10 Legkikh A Y, Askhadullin R S, Sadovnichiy R P. Nuclear Energy and Technology, 2016, 2(2), 136.
11 Askhadullin R S, Martynov P N, Rachkov V I, et al. High Temperature Apparatures and Structures, 2014, 54, 564.
12 Muller G, Heinzel A, Schumacher G, et al. Journal of Nuclear Materials, 2003, 321, 256.
13 Courouau J L, Sellier S, Chabert C, et al. Afinidad, 2005, 62, 464.
14 Lim J, Marien A, Rosseet K, et al. Journal of Nuclear Materials, 2012, 419, 270.
15 Lim J, Manfredi G, Marien A, et al. Sensors and Actuators B: Chemical, 2013, 188, 1048.
16 Wu X L, Sivaraman R, Li N, et al. UNLV Libraries, 2003, 1-22-03.
17 Darling T W, Li N. Los Alamos National Laboratory, LA-UR-01-4486.
18 Sugawara T, Yamaguchi K. JAEA-Technology 2015-022, 2015 (in Japanese).
19 Lee S H, Song T Y. Journal of Industrial and Engineering Chemistry, 2007, 13(4), 602.
20 Wang Y Q. Development and experiment of oxygen sensors in high temperature liquid LBE. Ph. D. Thesis, University of Science and Technology of China, China, 2014 (in Chinese).
王艳青. 高温液态铅铋合金氧传感器研制与实验研究. 博士学位论文, 中国科学技术大学, 2014.
21 Qin B, Fu X G, Ma H R, et al. Materials Reports, 2019, 33(6), 1821 (in Chinese).
秦博, 付晓刚, 马浩然, 等. 材料导报, 2019, 33(6), 1821.
22 Courouau J L, Trabuc P, Laplanche G, et al. Journal of Nuclear Materials, 2002, 301, 53.
23 OECD. Handbooks on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies, 2007, pp. 110.
24 Martynov P N, Askhadullin R S, Simakov A A, et al. In: Proceedings of the 17th International Conference on Nuclear Engineering. Brussel, 2009, pp. 555.
25 Martynov P N, Askhadullin R S, Simakov A A, et al. In: Proceedings of the 17th International Conference on Nuclear Engineering. Brussel, 2009, pp. 549.
26 Fernandez R, Van Tichelen K, Aerts A, et al. In:MYRRHA Technology and Research Facilities in Support of Heavy Liquid Metal SMR Fast Reactors. Milan, 2019.
27 Marino A, Keijers S, Lim J, et al. Journal of Nuclear Materials, 2014, 450, 270.
28 Marino A, Keijers S, Lim J, et al. International Journal of Heat and Mass Transfer, 2015, 80, 737.
29 Masatoshi K, Minoru T, Kuniaki M, et al. Journal of Nuclear Materials, 2006, 357, 97.
30 Brissonneau L, Beauchamp F, Morier O, et al. Journal of Nuclear Materials, 2011, 415, 348.
[1] 李广, 付一川, 余海存, 杨鹏辉, 魏莹, 喇培清, 顾玉芬. 光热发电储能熔盐研究进展[J]. 材料导报, 2025, 39(4): 24010158-10.
[2] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[3] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[4] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[5] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[6] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[7] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[8] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[9] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[10] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[11] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[12] 朱凯涛, 董多, 杨晓红, 朱冬冬, 王晓红, 马腾飞. GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为[J]. 材料导报, 2024, 38(24): 23100078-8.
[13] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[14] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[15] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed