Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24020147-10    https://doi.org/10.11896/cldb.24020147
  金属与金属基复合材料 |
TiAl基合金高温防护及热障涂层体系研究进展
张业飞1, 江海涛1,*, 田世伟1,2, 张思远1, 李冲2
1 北京科技大学高效轧制与智能制造国家工程研究中心,北京 100083
2 洛阳船舶材料研究所,河南 洛阳 471026
Research Progress of High Temperature Protection and Thermal Barrier Coating System of TiAl-based Alloys
ZHANG Yefei1, JIANG Haitao1,*, TIAN Shiwei1,2, ZHANG Siyuan1, LI Chong2
1 National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, University of Science and Technology Beijing, Beijing 100083, China
2 Luoyang Ship Materials Research Institute, Luoyang 471026, Henan, China
下载:  全 文 ( PDF ) ( 18623KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TiAl基合金以其低密度、高比强度、耐烧蚀、良好的高温力学性能等优点成为新型轻质高温结构候选材料,自20世纪70年代以来备受关注。随着各种强韧化措施的研究不断深入,TiAl基合金的室温脆性问题逐步得到了解决。TiAl基合金成功应用于航空发动机叶片、航天飞行器蒙皮、舵翼、汽车排气阀等。
然而,TiAl基合金高温抗氧化性能不足,限制了其作为高温零部件的应用。目前,主要通过整体合金化以及表面改性两种方式来改善TiAl基合金的高温抗氧化性能。整体合金化是在合金中添加Nb、Si、Mo、W、稀土等合金元素,促使合金表面形成致密的氧化层并提高氧化层与基体的结合力;表面改性主要包括表面合金化和表面涂层两种途径,表面合金化技术一般采用热扩散、离子注入、预氧化、激光表面合金化等方法,表面涂层技术是利用不同种类的涂层改善基体的表面性能,例如Ti-Al-X体系涂层、MCrAlY热障涂层、陶瓷涂层、复合涂层。
热障涂层,作为一种表面改性中的涂层材料,具有优异的抗氧化性能以及长期服役性能。当应用于TiAl基合金表面时,热障涂层能够有效提升合金的高温抗氧化性能。但两者结合也存在如下问题,热生长氧化物的过度生长导致界面失效,以及涂层与基体元素互扩散严重,导致热障涂层/TiAl合金体系长期服役性能减弱。
本文归纳并分析了TiAl基合金的高温氧化行为,分别从整体合金化以及表面改性两个方面综述了TiAl基合金高温防护的影响因素和作用机理,分析了热障涂层应用在TiAl合金表面所面临的问题并提出了改进方案,以期为提高TiAl基合金的抗高温氧化性能及发展热障涂层/TiAl合金体系提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张业飞
江海涛
田世伟
张思远
李冲
关键词:  TiAl基合金  热障涂层  抗氧化性能  整体合金化  表面改性    
Abstract: Since 1970s, TiAl-based alloys have been used as a new lightweight high temperature structure candidate material because of their low density, high specific strength, ablative resistance, and good high-temperature mechanical properties. With the deepening of research on various strengthening and toughening measures, the problem of room temperature brittleness of TiAl-based alloys has been gradually solved. TiAl-based alloys have been successfully applied to aero-engine blades, aerospace vehicle skins, rudder wings, automobile exhaust valves, etc.
However, the lack of high-temperature oxidation resistance of TiAl-based alloys limits their application as high-temperature components. At present, the high-temperature oxidation resistance of TiAl-based alloys is mainly improved by two methods: integral alloying and surface modification. Integral alloying is to add Nb, Si, Mo, W, rare earth and other alloying elements to the alloy, which promotes the formation of a dense oxide scale on the surface of the alloy and improves the adhesion between the oxide scale and the substrate. Surface modification mainly includes surface alloying and surface coating. Surface alloying technology generally includes thermal diffusion, ion implantation, pre-oxidation, laser surface alloying and so on. Surface coating technology is to use different kinds of coatings to improve the surface properties of the substrate, such as Ti-Al-X systemcoating, MCrAlY thermal barrier coating, ceramic coating, composite coating.
Thermal barrier coating, as a coating material in surface modification, has excellent oxidation resistance and long-term service performance. When applied to the surface of TiAl-based alloy, it can effectively improve the high-temperature oxidation resistance of the alloy. However, the combination of the thermal barrier coating and TiAl-based alloys also has the following problems. The excessive growth of thermal grown oxides leads to interface failure, and the elements interdiffusion between the coating and the substrate is serious, resulting in the long-term service performance of the thermal barrier coating/TiAl-based alloy system is weakened.
In this paper, the high-temperature oxidation behavior of TiAl-based alloys is summarized and analyzed. The influencing factors and mechanism of high-temperature protection of TiAl-based alloys are reviewed from two aspects of integral alloying and surface modification. The problems faced by the application of thermal barrier coatings on the surface of TiAl alloys are analyzed and the improvement scheme is proposed, in order to provide a reference for improving the high-temperature oxidation resistance of TiAl alloy and developing thermal barrier coating/TiAl alloy system.
Key words:  TiAl-based alloy    thermal barrier coating    oxidation resistance    integral alloying    surface modification
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(52201035)
通讯作者:  *江海涛,北京科技大学研究员、博士研究生导师。主要从事钢铁、有色金属材料的品种开发及板带生产技术研究。jianght@ustb.edu.cn   
作者简介:  张业飞,北京科技大学在读博士研究生。研究方向为TiAl基合金及涂层防护。
引用本文:    
张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
ZHANG Yefei, JIANG Haitao, TIAN Shiwei, ZHANG Siyuan, LI Chong. Research Progress of High Temperature Protection and Thermal Barrier Coating System of TiAl-based Alloys. Materials Reports, 2025, 39(4): 24020147-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020147  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24020147
1 Bewlay B P, Nag S, Suzuki A, et al. Materials at High Temperatures, 2016, 33(5), 549.
2 Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications, Weinheim: Wiley-VCH, Germany, 2003, pp. 513.
3 Neelam N S, Banumathy S, Bhattacharjee A, et al. Materials Today: Proceedings, 2019, 15, 30.
4 Kim S W, Hong J K, Na Y S, et al. Materials & Design, 2014, 54, 814.
5 Kim D, Seo D, Huang X, et al. International Materials Reviews, 2014, 59(6), 297.
6 Habel U, Heutling F, Kumze C, et al. In: Proceedings of the 13th World Conference on Titanium. Hoboken, NJ, USA: John Wiley & Sons, 2016, pp. 1223.
7 Kim B G, Kim G M, Kim C J. Scripta Metallurgica Et Materialia, 1995, 33(7), 1117.
8 Clarke D R, Oechsner M, Padture N P. MRS Bulletin, 2012, 37(10), 891.
9 Karaoglanli A C, Grund T, Turk A, et al. Surface and Coatings Techno-logy, 2019, 371, 47.
10 Birks N, Meier G H, Pettit F S. Introduction to the high temperature oxidation of metals, Cambridge University Press, UK, 2006, pp. 43.
11 Epifano E, Monceau D. Corrosion Science, 2023, 217, 111113.
12 Liu G L, Li Y. Acta Physica Sinica, 2012, 61(17), 423 (in Chinese).
刘贵立, 李勇. 物理学报, 2012, 61(17), 423.
13 Wang L. Research on processing and high temperature resistance of sputtering Al/Al2O3 gradual coating on γ-TiAl alloy. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2014 (in Chinese).
王玲. γ-TiAl合金表面溅射Al/Al2O3梯度涂层的工艺及其抗高温性能研究. 硕士学位论文, 南京航空航天大学, 2014.
14 Yoshihara M, Miura K. Intermetallics, 1995, 3(5), 357.
15 Lin J, Zhao L, Li G, et al. Intermetallics, 2011, 19(2), 131.
16 Lai X P, Li T F, Liu R, et al. Materials Reports, 2021, 35(S1), 374 (in Chinese).
赖旭平, 李天方, 刘瑞, 等. 材料导报, 2021, 35(S1), 374.
17 Zhao P X, Li X B, Xin W W, et al. Transactions of Nonferrous Metals Society of China, 2023, 33 (1), 128.
18 Knaislova A, Novak P, Cabibbo M, et al. Materials, 2021, 14(4), 1030.
19 Pflumm R, Donchev A, Mayer S, et al. Intermetallics, 2014, 53, 45.
20 Feng L, Li B, Li Q, et al. Materials Chemistry and Physics, 2024, 316, 129148.
21 Zhao P, Li X, Tang H, et al. Oxidation of Metals, 2020, 93(5), 433.
22 Kim D, Seo D Y, Kim S W, et al. Oxidation of Metals, 2016, 86 (5-6), 417.
23 Guo Q, Sun H, Cai Z, et al. Oxidation of Metals, 2022, 97(3), 323.
24 Hadi M, Bayat O, Meratian M, et al. Oxidation of Metals, 2018, 90(3), 421.
25 Naveed M, Renteria A F, Weib S. Journal of Alloys and compounds, 2017, 691, 489.
26 Schutze M, Friedle S. MRS Online Proceedings Library, 2013, 1516(1), 77.
27 Patel P, Zala A, Parekh T, et al. Surface and Coatings Technology, 2022, 447, 128839.
28 Li X, Taniguchi S, Matsunaga Y, et al. Intermetallics, 2003, 11(2), 143.
29 Gui C L, Ben H F, Liu X P, et al. Hot Working Technology, 2007, 36(2), 57 (in Chinese).
郭朝丽, 贲海峰, 刘小萍, 等. 热加工工艺, 2007, 36(2), 57.
30 Yao T, Liu Y, Liu B, et al. Surface and Coatings Technology, 2015, 277, 210.
31 Narita T, Izumi T, Yatagal M, et al. Intermetallics, 2000, 8(4), 371.
32 Liu X, You K, Wang Z, et al. Vacuum, 2013, 89, 209.
33 Panov D O, Sokovsky V S, Stepanov N D, et al. Corrosion Science, 2020, 177, 109003.
34 Yang Y, Shang H, Shao T. Applied Surface Science, 2020, 508, 145141.
35 Swadzba R, Laska N, Bauer P P, et al. Corrosion Science, 2020, 177, 108985.
36 Hu Y T, Zheng L, Yan H J, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(1), 193.
37 Nadine L, Reinhold B, Stephane K. Surface & Coatings Technology, 2018, 349, 347.
38 Braun R, Froehlich M, Leyens C. International Journal of Materials Research, 2010, 101(5), 637.
39 Dai J, Zhang N, Wang A, et al. Journal of Alloys and Compounds, 2018, 765, 46.
40 Pflumm R, Friedle S, Schutze M. Intermetallics, 2015, 56, 1.
41 Wu J J, Yan H J, Cao F H, et al. Surface and Coatings Technology, 2021, 422, 127495.
42 Wang S, Xie F, Wu X, et al. Ceramics International, 2019, 45(15), 18899.
43 Wang Y F, Liu S P, Wang X, et al. MW Metal Forming, 2022(11), 1 (in Chinese).
王一帆, 刘少璞, 王旭, 等. 金属加工(热加工), 2022(11), 1.
44 Chen W J, Song P, Gao D, et al. Journal of Aeronautical Materials, 2022, 42(1), 15 (in Chinese).
陈卫杰, 宋鹏, 高栋, 等. 航空材料学报, 2022, 42(1), 15.
45 Padture N P. Science, 2002, 296(5566), 280.
46 Ragan D D, Mates T, Clarke D R. Journal of the American Ceramic Society, 2003, 86(4), 541.
47 Burtin P, Brunelle J P, Pijolat M, et al. Applied Catalysis, 1987, 34, 225.
48 Darolia R. International Materials Reviews, 2013, 58(6), 315.
49 Hutchinson J W, He M Y, Evans A G. Journal of the Mechanics and Physics of Solids, 2000, 48(4), 709.
50 Dong H, Yang G J, Li C X, et al. Journal of the American Ceramic Society, 2014, 97(4), 1226.
51 Vialas N, Monceau D. Oxidation of Metals, 2006, 66(3-4), 155.
52 Yang L, Zou Z, Kou Z, et al. Acta Materialia, 2017, 139, 122.
53 Kim D, Huang X, Seo D, et al. Oxidation of Metals, 2012, 78(1), 31.
54 Puetz P, Huang X, Lima R S, et al. Surface and Coatings Technology, 2010, 205(2), 647.
55 Meng G H, Zhang B Y, Liu H, et al. Surface & Coatings Technology, 2018, 344, 102.
56 Zhang B Y, Yang G J, Li C X, et al. Applied Surface Science, 2017, 406, 99.
57 Dragos U, Gabriela M, Waltreut B, et al. Solid State Sciences, 2005, 7(4), 459.
58 Yu D, Gong J, Sun J, et al. Coatings, 2022, 12(7), 912.
59 Wang H, Wang Q S. Surface Technology, 2014, 43(3), 152 (in Chinese).
王皓, 王全胜. 表面技术, 2014, 43(3), 152.
60 Wang H, Zuo D, Chen G, et al. Corrosion Science, 2010, 52(10), 3561.
61 Nicolet M A. Thin Solid Films, 1978, 52(3), 415.
62 Ma J, Jiang S M, Gong J, et al. Corrosion Science, 2011, 53(9), 2894.
63 Ren P, Zhu S, Wang F. Corrosion Science, 2015, 99, 219.
64 Cavaletti E, Naveos S, Mercier S, et al. Surface and Coatings Technology, 2009, 204(6-7), 761.
65 Lang F, Narita T. Intermetallics, 2007, 15(4), 599.
66 Wu Y, Li X, Song G, et al. Oxidation of Metals, 2010, 74(5), 287.
67 Guo C, Wang W, Cheng Y, et al. Corrosion Science, 2015, 94, 122.
68 Shi J, Li H, Wan M, et al. Corrosion Science, 2016, 102, 200.
69 Li H, Wang Q, Jiang S, et al. Corrosion Science, 2011, 53(3), 1097.
70 Wang Q, Zhang K, Gong J, et al. Acta Materialia, 2007, 55(4), 1427.
71 Li H, Wang Q, Jiang S, et al. Corrosion Science, 2010, 52(5), 1668.
72 Cheng Y, Wang W, Zhu S, et al. Intermetallics, 2010, 18(4), 736.
73 Han D, Liu D, Niu Y, et al. Corrosion Science, 2021, 188, 109538.
74 Li Y, Xu J, Li J, et al. Corrosion Science, 2023, 222, 111416.
75 Burman C, Ericsson T, Kvernes I, et al. Surface and Coatings Technology, 1987, 32(1-4), 127.
[1] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[2] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[3] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[4] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[5] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[6] 王玉锋, 付前刚, 杨俊, 张华, 杨岩. 热障涂层对DD6单晶燃气热腐蚀及力学性能的影响[J]. 材料导报, 2024, 38(18): 23070037-6.
[7] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[8] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[9] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[10] 赵云松, 张迈, 戴建伟, 郭会明, 孙志军, 郭媛媛, 张剑, 花银群, 霍坤, 戴峰泽. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 21040168-7.
[11] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[12] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[13] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[14] 刘嘉航, 吕哲, 周艳文, 解志文, 陈浩, 程蕾. 用于热障涂层的高熵陶瓷材料研究进展[J]. 材料导报, 2023, 37(22): 22060081-11.
[15] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed