Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24040251-5    https://doi.org/10.11896/cldb.24040251
  无机非金属及其复合材料 |
聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池
李泽榕1,2, 毛晨雨2, 孙涛2, 林煌2,3, 王佳明2, 陈步超2, 汤世伟1, 王维燕2,3,*
1 宁波大学物理科学与技术学院,浙江 宁波 315211
2 浙大宁波理工学院材料科学与工程学院,浙江 宁波 315100
3 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
Polymer Additive for High-performance Flexible Perovskite Solar Cells on Ag-mesh Transparent Electrodes
LI Zerong1,2, MAO Chenyu2, SUN Tao2, LIN Huang2,3, WANG Jiaming2, CHEN Buchao2, TANG Shiwei1, WANG Weiyan2,3,*
1 School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, China
2 School of Materials Science and Engineering, NingboTech University, Ningbo 315100, Zhejiang, China
3 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
下载:  全 文 ( PDF ) ( 14785KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于银栅格透明电极的柔性钙钛矿太阳能电池是一种极具前景的便携式和可穿戴电子设备的理想电源。然而,卤素离子和金属离子之间的相互扩散会影响器件的效率和稳定性,对制备高性能柔性器件提出了挑战。本研究采用聚氨酯(PU)聚合物添加剂钝化钙钛矿薄膜晶界,结合界面阻隔层的策略制备柔性钙钛矿电池。Pb2+与C=O之间的强相互作用改善了钙钛矿薄膜的结晶特性,降低了薄膜的缺陷态密度。因此,基于银栅格电极的柔性钙钛矿电池光电转换效率(PCE)提高到20.21%,是迄今为止非ITO柔性电极上钙钛矿电池最高效率之一。由于聚氨酯填充晶界和界面阻隔层的双重作用阻碍了卤素和金属的相互扩散,柔性钙钛矿电池还表现出较高的湿度稳定性和运行稳定性。器件在30%的相对湿度下暴露150 h后仍能保持92.1%的初始PCE值,在最大功率点下工作1 000 h后仍能保持95%的初始PCE值。最后,柔性钙钛矿电池显示出良好的机械稳定性,在4 mm的曲率半径下弯曲1 000次后,还保持了86%的初始PCE。此研究可为高性能柔性钙钛矿光电器件的设计提供思路和实验指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李泽榕
毛晨雨
孙涛
林煌
王佳明
陈步超
汤世伟
王维燕
关键词:  柔性钙钛矿太阳能电池  银栅格透明电极  聚氨酯  晶界    
Abstract: Flexible perovskite solar cells (PSCs) based on Ag-mesh transparent electrodes have been developed as promising power sources for portable and wearable electronic devices. However, the undesired interdiffusion of halogen and metal ions poses a challenge to the efficiency and stability of the devices. This study focuses on the preparation of flexible PSCs utilizing the combined effects of polyurethane (PU) polymer additive for grain boundary passivation and an interfacial protective layer. One advantage of the strong interaction between Pb2+ and the C=O species is that it improved the crystal structure of the perovskite films, resulting in films of reduced defect density. As a result, the Ag-mesh electrode’s flexible PSC demonstrated an enhanced power conversion efficiency (PCE) of 20.21%, ranking among the greatest PSC efficiencies on non-ITO electrodes to date. Moreover, the flexible PSCs demonstrated improved moisture and operational stability due to the presence of PU additive at the grain boundary and the interlayer barrier. This hindered the interdiffusion of halogen and metal. As a result, the PSCs were able to maintain 92.1% of their starting PCE value after being exposed to 30% relative humidity for 150 h, and 95% of their initial PCE when operating at the maximum power point for 1 000 h. Finally, after 1 000 cycles of bending with a 4 mm radius, the PSCs showed good mechanical stability, while also maintaining 86% of their initial PCE. This work can shed light on a new perspective for designing high-performance flexible perovskite-based optoelectronic devices.
Key words:  flexible perovskite solar cell    Ag-mesh transparent electrode    polyurethane    grain boundary
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TM914.4  
基金资助: 宁波市重点研发项目(2023Z151);宁波市科技创新项目(2022-DST-004)
通讯作者:  *王维燕,浙大宁波理工学院研究员、硕士研究生导师。2009年毕业于浙江大学硅材料国家重点实验室获工学博士学位。长期从事高效低成本太阳能电池关键材料与技术研究、涵盖晶硅太阳能电池硅材料缺陷及杂质研究和低成本金属化技术研究、钙钛矿太阳能电池的柔性化及半透明化研究。wangwy@nbt.edu.cn   
作者简介:  李泽榕,宁波大学物理科学与技术学院硕士研究生,在王维燕研究员的指导下进行研究。目前主要研究领域为钙钛矿太阳能电池。
引用本文:    
李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
LI Zerong, MAO Chenyu, SUN Tao, LIN Huang, WANG Jiaming, CHEN Buchao, TANG Shiwei, WANG Weiyan. Polymer Additive for High-performance Flexible Perovskite Solar Cells on Ag-mesh Transparent Electrodes. Materials Reports, 2025, 39(4): 24040251-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040251  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24040251
1 Yoo J J, Seo G, Chua M R, et al. Nature, 2016, 590(7847), 587.
2 Xie L, Du S, Li J, et al. Energy & Environmental Science, 2023, 16(11), 5423.
3 Kim B J, Kim D H, Lee Y Y, et al. Energy & Environmental Science, 2015, 8(3), 916.
4 Lee G, Kim M, Choi Y W, et al. Energy & Environmental Science, 2019, 12(10), 3182.
5 Kam M, Zhang Q, Zhang D, et al. Scientific Reports, 2019, 9(1), 6963.
6 Feng J, Zhu X, Yang Z, et al. Advanced Materials, 2018, 30(35), 1801418.
7 Vosgueritchian M, Lipomi D J, Bao Z. Advanced Functional Materials, 2012, 22(2), 421.
8 Kaltenbrunner M, Adam G, Głowacki E D, et al. Nature materials, 2015, 14(10), 1032.
9 Poorkazem K, Liu D, Kelly T L. Journal of Materials Chemistry A, 2015, 3(17), 9241.
10 Qiu L, He S, Yang J, et al. Journal of Materials Chemistry A, 2016, 4(26), 10105.
11 Yoon J, Sung H, Lee G, et al. Energy & Environmental Science, 2017, 10(1), 337.
12 Ricciardulli A G, Yang S, Feng X, et al. ACS Applied Materials & Interfaces, 2017, 9(30), 25412.
13 Seo J H, Um H D, Shukla A, et al. Nano Energy, 2015, 16, 122.
14 Chen X, Xu G, Zeng G, et al. Advanced Materials, 2020, 32(14), 1908478.
15 Li Y, Meng L, Yang Y, et al. Nature Communications, 2016, 7(1), 10214.
16 Khan A, Lee S, Jang T, et al. Small, 2016, 12(22), 3021.
17 Li M, Zuo W W, Ricciardulli A G, et al. Advanced Materials, 2020, 32(38), 2003422.
18 Liu M, Chen Z, Yang Y, et al. Journal of Materials Chemistry A, 2019, 7(29), 17324.
19 Yang J, Cao Q, Wang T, et al. Energy & Environmental Science, 2022 15(5), 2154.
20 Zhou J, Li S, Lv X, et al. Journal of Power Sources, 2020, 478, 228764.
21 Bai S, Da P, Li C, et al. Nature, 2019, 571(7764), 245.
22 Zhao J, Brinkmann K O, Hu T, et al. Advanced Energy Materials, 2017, 7(14), 1602599.
23 Tran V D, Pammi S V N, Park B J, et al. Nano Energy, 2019, 65, 104018.
24 Jeong G, Koo D, Seo J, et al. Nano Letters, 2020, 20(5), 3718.
25 Yun J S, Choi W J, Kim S H, et al. Surfaces and Interfaces, 2021, 27, 101546.
26 Ji H, Huang J, Zhang W, et al. Advanced Materials Interfaces, 2022, 9(16), 2200483.
27 Lin H, Miao R, Fu S, et al. Advanced Materials Interfaces, 2022, 9(32), 2201403.
28 Hu X, Meng X, Yang X, et al. Science Bulletin, 2021, 66(6), 527.
29 Zhang J, Hu X, Li H, et al. Advanced Functional Materials, 2021, 31(37), 2104396.
30 Hwang H, Ahn J, Lee E, et al. Nanoscale, 2017, 9(44), 17207.
31 Huang Z, Hu X, Liu C, et al. Advanced Functional Materials, 2017, 27(41), 1703061.
[1] 王慧明, 金剑锋, 王东新, 许德美, 郭凯琪, 杨培军, 秦高梧. 原子模拟研究铍$〈11\bar{2}0〉$对称倾侧晶界的能量与结构特性[J]. 材料导报, 2025, 39(4): 23110178-7.
[2] 孙斐, 赵洪峰, 缪奎. 钆掺杂的高非线性和低漏流SnO2基压敏电阻材料[J]. 材料导报, 2025, 39(2): 23110256-4.
[3] 路正楠, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 鲁米诺自发光在聚氨酯光敏剂介导光动力治疗中的应用[J]. 材料导报, 2025, 39(1): 23110275-7.
[4] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[5] 阎格, 张慧娟, 蔡利海, 邵伟光, 刘文言. 燃料油与紫外光共同作用下热塑性聚氨酯结构与性能演变规律[J]. 材料导报, 2024, 38(6): 22050216-6.
[6] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[7] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[8] 刘宜娜, 杨荣杰, 冯文静, 王坤, 欧良, 陈兆恒, 陈昱隆. 聚氨酯软质泡沫制品阻燃性能检测分析[J]. 材料导报, 2024, 38(3): 22060066-4.
[9] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[10] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[11] 向顺成, 郑廷祥, 高英力, 史威, 蒋震, 何彦琪, 曾维. 聚氨酯改性聚羧酸盐的合成及与水泥净浆的相互作用[J]. 材料导报, 2024, 38(21): 23040167-7.
[12] 陈卓坤, 张晓芳, 刘语馨, 虢婷, 孙志平, 周青, 陈永楠. 纳米多晶金属的晶界设计及强韧化研究进展[J]. 材料导报, 2024, 38(20): 23070227-9.
[13] 田小革, 李光耀, 陈功, 姚世林, 黄雪梅, 王俊杰, 陆劲州. TPU/Nano-ZnO复合改性沥青的性能研究及微观机制[J]. 材料导报, 2024, 38(16): 23050071-10.
[14] 鲁飞, 刘树峰, 李慧, 张帅, 赵娜娜, 李飞, 尹高天. 稀土合金扩散烧结钕铁硼磁体研究进展[J]. 材料导报, 2024, 38(16): 23020178-8.
[15] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed