Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 23120167-9    https://doi.org/10.11896/cldb.23120167
  无机非金属及其复合材料 |
可印刷柔性传感器在人体健康监测中的研究进展
邵艳秋1,*, 任婷1,2, 王迪3, 姬旭1,2, 柳林1,2, 杨荟1,2, 杨皓婷1,2, 张吉振2, 陶金龙2, 孔娜2,*
1 牡丹江师范学院化学化工学院,黑龙江省光电功能材料重点实验室,黑龙江 牡丹江 157011
2 中国热带农业科学院农产品加工研究所,广东省天然橡胶加工重点实验室,广东 湛江 524001
3 山东省平邑县检验检测中心,山东 临沂 273300
Research Progress of Printable Flexible Sensors in Human Health Monitoring
SHAO Yanqiu1,*, REN Ting1,2, WANG Di3, JI Xu1,2,LIU Lin1,2, YANG Hui1,2, YANG Haoting1,2,ZHANG Jizhen2, TAO Jinlong2, KONG Na2,*
1 Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mu Dan jiang Normal University, Mudanjiang 157011, Heilongjiang, China
2 Guangdong Key Laboratory of Natural Rubber Processing, Institute of Agricultural Products Processing, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
3 Pingyi Country Inspection and Testing Center, Linyi 273300, Shandong, China
下载:  全 文 ( PDF ) ( 22867KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着可穿戴技术的迅速发展,可印刷柔性传感器作为一种创新的传感器制备方法,已在人体健康监测领域取得了显著的研究进展。本文综述了可印刷柔性传感器在人体健康监测中的研究现状,从印刷方式、传感机制以及材料性质等角度出发,并结合可印刷柔性传感器的灵敏度、稳定性、重现性等方面对目前的可印刷柔性传感器展开了系统的总结。最后,进一步讨论了可印刷柔性传感器在新型可穿戴电子设备和人体疾病防控等领域的应用,并展望了可印刷柔性传感器在实际应用和发展过程中面临的一些挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵艳秋
任婷
王迪
姬旭
柳林
杨荟
杨皓婷
张吉振
陶金龙
孔娜
关键词:  柔性传感器  健康监测  导电材料  可穿戴设备    
Abstract: As wearable technology rapidly evolves, printable flexible sensors have emerged as an innovative method for sensor fabrication and have seen significant research progress in the field of human health monitoring. This review presents an overview of the current research status of prin-table flexible sensors, focusing on printing methods, sensing mechanisms, and material properties. It also provides a comprehensive summary of their sensitivity, stability, and reproducibility. Finally, the applications of printable flexible sensors in new wearable electronic devices and human disease prevention and control are discussed, along with the challenges they face in practical applications and future development.
Key words:  flexible sensor    health monitoring    conductive material    wearable device
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TP212  
基金资助: 黑龙江省省属高等学校基本科研业务费科研机构专项(1355JG015);国家自然科学基金(22204174)
通讯作者:  *邵艳秋,博士,牡丹江师范学院化学化工学院教授、硕士研究生导师。目前主要从事功能材料、催化材料等方面的研究工作。shaoyanqiu1969@163.com
孔娜,博士,中国热带农业科学院特聘研究员,澳大利亚迪肯大学博士后研究员。目前主要从事纳米材料、生物传感等方面的研究工作。kong.na@deakin.edu.au   
引用本文:    
邵艳秋, 任婷, 王迪, 姬旭, 柳林, 杨荟, 杨皓婷, 张吉振, 陶金龙, 孔娜. 可印刷柔性传感器在人体健康监测中的研究进展[J]. 材料导报, 2025, 39(12): 23120167-9.
SHAO Yanqiu, REN Ting, WANG Di, JI Xu,LIU Lin, YANG Hui, YANG Haoting,ZHANG Jizhen, TAO Jinlong, KONG Na. Research Progress of Printable Flexible Sensors in Human Health Monitoring. Materials Reports, 2025, 39(12): 23120167-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120167  或          https://www.mater-rep.com/CN/Y2025/V39/I12/23120167
1 Yang J, Ling K, Liu L, et al. IEEE Sensors Journal, 2022, 22(14) 13937.
2 Deng H T, Zhang X R, Wang Z Y, et al. Nano Energy, 2021, 83, 105823.
3 Wen D L, Pang Y X, Huang P, et al. Advanced Fiber Materials, 2022, 4(4), 873.
4 Miah M R, Yang M, Hossain M M, et al. Sensors and Actuators A:Physical, 2022, 344, 113696.
5 Wang X, Li J, Song H, et al. ACS Applied Materials & Interfaces, 2018, 10(8), 7371.
6 Zhang F, Yang K, Pei Z, et al. RSC Advances, 2022, 12(4), 2391.
7 Jin Y, Chen G, Lao K, et al. npj Flexible Electronics, 2020, 4(1), 28.
8 Meng K, Chen J, Li X, et al. Advanced Functional Materials, 2019, 29(5), 1806388.
9 Gao F, Liu C, Zhang L, et al. Microsystems & Nanoengineering, 2023, 9(1), 1.
10 Shen Z, Liu F, Huang S, et al. Biosensors and Bioelectronics, 2022, 114298.
11 Niu H, Yin F, Kim E S, et al. InfoMat, 2023, 5(5), e12412.
12 Yan Y, Jiang Y, Ng E L L, et al. Materials Today Advances, 2023, 17, 100333.
13 You X, Zhang Q, Yang J, et al. Composites Part A:Applied Science and Manufacturing, 2023, 107420.
14 Wang R, Sun L, Zhu X, et al. Advanced Materials Technologies, 2023, 8(1), 2200855.
15 Khan K, Tareen A K, Iqbal M, et al. Small, 2023, 19(19), 2206147.
16 Šakalys R, Mohammadlou B S, Raghavendra R. Results in Engineering, 2022, 15, 100578.
17 Gong X, Huang K, Wu Y H, et al. Sensors and Actuators A:Physical, 2022, 345, 113821.
18 Lee S, Lee S H. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9(2), 409.
19 Su M, Song Y. Chemical Reviews, 2022, 122(5), 5144.
20 Li Q, Luo S, Wang Y, et al. Sensors and Actuators A:Physical, 2019, 300, 111664.
21 Jandyal A, Chaturvedi I, Wazir I, et al. Sustainable Operations and Computers, 2022, 3, 33.
22 Cummins G, Desmulliez M P Y, Circuit World, 2012, 38(4), 193.
23 Solís Pinargote N W, Smirnov A, Peretyagin N, et al. Nanomaterials, 2020, 10(7), 1300.
24 Ali S, Khan S, Bermak A. IEEE Access, 2019, 7, 163981.
25 Khan A, Rahman K, Ali S, et al. Journal of Materials Research, 2021, 36, 1.
26 Zikulnig J, Hirschl C, Rauter L, et al. Flexible and Printed Electronics, 2019, 4(1), 015008.
27 Zhang Y, Zhu Y, Zheng S, et al. Journal of Energy Chemistry, 2021, 63, 498.
28 Nomura K I, Horii Y, Koshi T, et al. Journal of Micromechanics and Microengineering, 2020, 30(11), 115023.
29 Wei P, Leng H, Chen Q, et al. ACS Applied Polymer Materials, 2019, 1(4), 885.
30 Abdollahi S, Markvicka EJ, Majidi C, et al. Advanced Healthcare Materials, 2020, 9(15), 1901735.
31 Abshirini M, Charara M, Marashizadeh P, et al. Applied Nanoscience, 2019, 9, 2071.
32 Guo S Z, Qiu K, Meng F, et al. Advanced Materials, 2017, 29(27), 1701218.
33 Lin X, Li X, Zhang Z, et al. Materials Today Chemistry, 2023, 30, 101529.
34 Zhang Y, Zhu Y, Zheng S, et al. Journal of Energy Chemistry, 2021, 63, 498.
35 Liu H, Zhang H, Han W, et al. Advanced Materials, 2021, 33(8), 2004782.
36 NajafiKhoshnoo S, Kim T, Tavares-Negrete J A, et al. Advanced Materials Technologies, 2023, 8(8), 2201655.
37 Li Y, Wang Y, Chen S, et al. Analytica Chimica Acta, 2021, 1154, 338275.
38 Ahmad Ruzaidi D A, Maurya M R, Yempally S, et al. RSC Advances, 2023, 13(12), 8202.
39 Foroughi J, Spinks G M, Aziz S, et al. ACS Nano, 2016, 10(10), 9129.
40 Li H, Du Z. ACS Applied Materials & Interfaces, 2019, 11(49), 45930.
41 Xing H, Li X, Lu Y, et al. Sensors and Actuators B:Chemical, 2022, 361, 131704.
42 Zhang Y, Zhang L, Cui K, et al. Advanced Materials, 2018, 30(51), 1801588.
43 Lin Y, Chen J, Tavakoli M M, et al. Advanced Materials, 2019, 31(5), 1804285.
44 Heo J, Eom J, Kim Y H, et al. Small, 2018, 14(3), 1703034.
45 Fan X, Nie W, Tsai H, et al. Advanced Science, 2019, 6(19), 1900813.
46 Chen Y, Fan Z, Zhang Z, et al. Chemical Reviews, 2018, 118(13), 6409.
47 Peng B, Zhao F, Ping J, et al. Small, 2020, 16(44), 2002681.
48 Ervasti H, Järvinen T, Pitkänen O, et al. ACS Applied Materials & Interfaces, 2021, 13(23), 27284.
49 Lo L W, Zhao J, Wan H, et al. ACS Applied Materials & Interfaces, 2021, 13(18), 21693.
50 Han X, Xiao W, Wen S, et al. Advanced Electronic Materials, 2021, 7(4), 2001242.
51 Lopez-Larrea N, Criado-Gonzalez M, Dominguez-Alfaro A, et al. ACS Applied Polymer Materials, 2022, 4(9), 6749.
52 Luo R, Li X, Li H, et al. Progress in Organic Coatings, 2022, 162, 106593.
53 Yoon S, Kim H K. Surface and Coatings Technology, 2020, 384, 125308.
54 Karaş B, Beedasy V, Leong Z, et al. Micromachines, 2021, 12(10), 1185.
55 Shah M A, Lee D G, Lee B Y, et al. IEEE Access, 2021, 9, 140079.
56 Deiner L J, Reitz T L, Advanced Engineering Materials, 2017, 19(7), 1600878.
57 Kim S S, Kim H S, Lee J G, et al. SID Symposium Digest of Technical Papers, 2018, 49(1), 839.
58 Naik A R, Zhou Y, Dey A A, et al. Lab on a Chip, 2022, 22(1), 156.
59 Lim W Y, Goh C H, Yap K Z, et al. Biosensors, 2023, 13(2), 209.
60 Lv D, Chen W, Shen W, et al. Sensors and Actuators B:Chemical, 2019, 298, 126890.
61 Kraft U, Molina-Lopez F, Son D, et al. Advanced Electronic Materials, 2020, 6(1), 1900681.
62 Kim K, Jung M, Kim B, et al. Nano Energy, 2017, 41, 301.
63 Białas K, Moschou D, Marken F, et al. Microchimica Acta, 2022, 189(4), 172.
64 Xu J, Ma J, Peng Y, et al. Chinese Chemical Letters, 2023, 34(4), 107527.
65 Kant T, Shrivas K, Tapadia K, et al. New Journal of Chemistry, 2021, 45(18), 8297.
66 Fu S, Tao J, Wu W, et al. Advanced Materials Technologies, 2019, 4(4), 1800703.
67 Hassanpour S, Hasanzadeh M, Saadati A, et al. Microchemical Journal, 2019, 146, 345.
68 Soe H M, Abd Manaf A, Matsuda A, et al. Sensors and Actuators A:Physical, 2021, 329, 112793.
69 Cinti S, Arduini F. Biosensors and Bioelectronics, 2017, 89, 107.
70 Krebs F C. Solar Energy Materials and Solar Cells, 2009, 93(4), 394.
71 Huang Q, Zhu Y. Advanced Materials Technologies, 2019, 4(5), 1800546.
72 Beniwal A, Ganguly P, Aliyana A K, et al. Sensors and Actuators B:Chemical, 2023, 374, 132731.
73 Li Z, Wang F, Liu L, et al. Cellulose, 2022, 29(8), 4661.
74 Ma H, Li J, Zhou J, et al. ACS Applied Materials & Interfaces, 2022, 14(9), 11813.
75 Wei X, Zhu M, Li J, et al. Nano Energy, 2021, 85, 106031.
76 Ren T, Yang H, Zhang J, et al. Advanced Engineering Materials, 2023, 25(21), 2301018.
77 Wang Z, Ding J, Guo R. ACS Applied Materials & Interfaces, 2023, 15(3), 4789.
78 Jeerapan I, Sangsudcha W, Phokhonwong P. Sensing and Bio-Sensing Research, 2022, 38, 100525.
79 Chu Z, Peng J, Jin W. Sensors and Actuators B:Chemical, 2017, 243, 919.
80 Azadmanjiri J, Thuniki N R, Guzzetta F, et al. Advanced Functional Materials, 2021, 31(17), 2010320.
81 Antuña-Jiménez D, González-García M B, Hernández-Santos D, et al. Biosensors 2020, 10(2), 9.
82 Luo C, Tian B, Liu Q, et al. Advanced Materials Technologies, 2020, 5(2), 1900925.
83 Cao R, Wang J, Zhao S, et al. Nano Research, 2018, 11(7), 3771.
84 Shaikh M O, Srikanth B, Zhu P Y, et al. Sensors, 2019, 19(18), 3990
85 Bian L, Wei Q, Qiong W. Nanotechnology Reviews, 2022, 11(1), 1193.
86 Ngo T D, Kashani A, Imbalzano G, et al. Composites Part B:Engineering, 2018, 143, 172.
87 Zhu Z, Park H S, McAlpine M C, Science Advances, 2020, 6(25), 5575.
88 Liu C, Huang N, Xu F, et al. Polymers, 2018, 10(6), 629.
89 Nagamine K, Nomura A, Ichimura Y, et al. Analytical Sciences, 2020, 36(3), 291.
90 Lee J, So H. Microsystems & Nanoengineering, 2023, 9(1), 44.
91 Yi Q, Najafikhoshnoo S, Das P, et al. Advanced Materials Technologies, 2022, 7(5), 2101034.
92 Li Z, Li B, Chen B, et al. Nanotechnology, 2021, 32(39), 395503.
93 Nesaei S, Song Y, Wang Y, et al. Analytica Chimica Acta, 2018, 1043, 142.
94 Nah J S, Barman S C, Zahed M A, et al. Sensors and Actuators B:Chemical, 2021, 329, 129206.
95 Lunghi A, Mariano A, Bianchi M, et al. Advanced Materials Interfaces, 2022, 9(25), 2200709.
96 Solazzo M, Monaghan M G. Synthetic Metals, 2022, 290, 117157.
97 Shao Y, Zhang Q, Zhao Y, et al. Materials, 2021, 14(21), 6499.
98 Keirouz A, Mustafa Y L, Turner J G, et al. Small, 2023, 19(14), 2206301.
99 Niittynen J, Abbel R, Mäntysalo M, et al. Thin Solid Films, 2014, 556, 452.
100 Nguyen T N H, Nolan J K, Park H, et al. Biosensors and Bioelectronics, 2019, 131, 257.
101 Huang H J, Ning X, Zhou M B, et al. ACS Applied Materials & Interfaces, 2021, 13(15), 18021.
102 Tan H W, An J, Chua C K, et al. Advanced Electronic Materials, 2019, 5(5), 1800831.
103 Tortorich R P, Choi J W. Nanomaterials, 2013, 3(3), 453.
104 Denneulin A, Bras J, Blayo A, et al. Nanotechnology, 2009, 20(38), 385701.
105 Nayak L, Mohanty S, Nayak S K, et al. Journal Materials Chemistry C, 2019, 7(29), 8771.
106 Liu Y, Ma X, Zhang H, et al. ACS Applied Electronic Materials, 2022, 4(2), 814.
107 He P, Cao J, Ding H, et al. ACS Applied Materials & Interfaces, 2019, 11(35), 32225.
108 Zhang Y, Lin H, Zhang L, et al. Applied Surface Science, 2023, 611, 155649.
109 Suresh R R, Lakshmanakumar M, Arockia J J B B, et al. Journal of Materials Science, 2021, 56(15), 8951.
110 Popov V, Fleisher A, Muller-Kamskii G, et al. Scientific Reports, 2021, 11(1), 2438.
111 Pei Z, Zhang Q, Liu Y, et al. Nanotechnology, 2020, 31(30), 305501.
112 Yuk H, Lu B, Lin S, et al. Nature Communications, 2020, 11(1), 1604.
113 Fujita T. Science and Technology of Advanced Materials, 2017, 18(1), 724.
[1] 张聪, 梁柄权, 王晓峰, 陈新亮, 侯国付, 赵颖, 张晓丹. 透明导电材料研究进展[J]. 材料导报, 2024, 38(6): 23040045-13.
[2] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[3] 崔晓晴, 王水莲, 王锐, 张洪艳. 二维导电纳米材料在聚合物燃烧预警及阻燃应用中的研究进展[J]. 材料导报, 2024, 38(17): 23040277-9.
[4] 杜姗, 魏云航, 谭宇浩, 周金利, 杨红英, 周伟涛. 蚕丝基柔性可穿戴传感器在人体健康监测中的研究进展[J]. 材料导报, 2024, 38(12): 22100190-11.
[5] 张永芳, 黎亮, 董丽虹, 王海斗, 王朋, 谢向宇. RFID传感标签制备工艺研究进展[J]. 材料导报, 2023, 37(22): 22030149-10.
[6] 杨文冬, 孙浩强, 南敬昌, 刘蕊. 小型化柔性印制天线:材料、工艺及应用[J]. 材料导报, 2023, 37(12): 21070182-13.
[7] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[8] 孙静, 李韩飞, 郭培志, 李光林, 刘志远. 柔性可拉伸导电材料用于生理信号获取与反馈的研究简述[J]. 材料导报, 2021, 35(5): 5158-5165.
[9] 朱洪艳, 吴宝昌, 林长亮, 王金亮, 王刚. 直升机复合材料结构基于振动健康监测的研究进展[J]. 材料导报, 2020, 34(Z1): 581-584.
[10] 张永芳, 王霞, 邢志国, 黄艳斐, 郭伟玲. 面向机械装备健康监测的振动传感器研究现状[J]. 材料导报, 2020, 34(13): 13121-13130.
[11] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[12] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[13] 丁杨, 周双喜, 董晶亮, 王中平, 郑智秋. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(z1): 274-277.
[14] 梁兴, 高国华, 吴广明. 氧化钒作锂离子电池正极材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 12-33.
[15] 贾兴文, 张新, 马冬, 杨再富, 石从黎, 王智. 导电混凝土的导电性能及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 90-97.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed