Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24030156-7    https://doi.org/10.11896/cldb.24030156
  无机非金属及其复合材料 |
氮化碳纳米棒簇的构筑及对抗坏血酸传感性能研究
应智业1, 乔宇庭2, 刘秉鑫1,*, 乔丽娟3,*
1 青海大学机械工程学院,西宁 810016
2 华中科技大学环境科学与工程学院,武汉 430074
3 青海大学基础医学部,西宁 810016
Construction of Carbon Nitride Nanorod Clusters and Their Sensing Properties for Ascorbic Acid
YING Zhiye1, QIAO Yuting2, LIU Bingxin1,*, QIAO Lijuan3,*
1 School of Mechanical Engineering, Qinghai University, Xining 810016, China
2 School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3 School of Basic Medical Sciences, Qinghai University, Xining 810016, China
下载:  全 文 ( PDF ) ( 38550KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 抗坏血酸(Ascorbic acid,AA)参与人体内的各种新陈代谢、伤口愈合以及对抗多种疾病,检测人体AA的含量对人体健康的诊断有重要意义。本工作以三聚氰胺为原料,通过水热法掺入氮源并通过高温煅烧制备出氮化碳纳米棒簇(g-C3N4 nanorod clusters,gCN NRCs),将其用作传感材料以实现高效的电催化氧化检测AA。通过扫描电子显微镜、X射线衍射仪和傅里叶红外光谱等多种表征方法,完整地揭示了gCN NRCs的形貌、晶体结构和化学组分。gCN NRCs在pH=6.0、1.6 mmol/L AA的PBS缓冲溶液中、180 s富集时间和6 μL修饰体积下表现出最大的AA传感响应,对AA的检测范围为0.2~1.6 mmol/L,活性面积为0.889 cm2,检测限为4.43 μmol/L。通过探究不同扫描速率对AA的响应曲线,发现该催化过程是一个扩散过程。电化学传感器的循环及长期稳定性、重复性和重现性的相对标准偏差(RSD)值分别为6.47%、1.36%、2.15%和4.43%,同时具有优异的抗干扰性,表明gCN NRCs能够作为诊断与AA相关疾病的优选材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
应智业
乔宇庭
刘秉鑫
乔丽娟
关键词:  氮化碳  纳米棒簇  抗坏血酸  电化学传感器    
Abstract: Ascorbic acid (AA) is involved in various metabolisms in the body, wound healing, and fighting against many diseases, and the detection of AA in the human body is important for the diagnosis of human health. In this work, melamine was used as raw material, and a nitrogen-source was added by the hydrothermal method and calcined at high temperature to prepare carbon nitrode nanorod clusters (g-C3N4 nanorod clusters, gCN NRCs), which were used as sensing materials to achieve efficient electrocatalytic oxidation for the detection of AA. The morphology, crystal structure and chemical composition of gCN NRCs were completely revealed by scanning electron microscopy, X-ray diffractometer and Fourier infrared spectroscopy. gCN NRCs showed the highest AA sensing response in PBS buffer solution with pH=6.0, 1.6 mmol/L AA,an enrichment time of 180 s and a modification volume of 6 μL. The detection range of AA was 0.2—1.6 μmol/L, the active area was 0.889 cm2, and the detection limit was 4.43 μmol/L. By exploring the response curves of AA at different scan rates, it is indicated that the catalytic process is a diffusion process. The relative standard deviation (RSD) values of the electrochemical sensor’s cyclic and long-term stability, repeatability, and reproducibility are 6.47%, 1.36%, 2.15%, and 4.43% respectively, and it also possesses excellent anti-interference ability, indicating that gCN NRCs have great potential as a promising material for the diagnosis of AA-related diseases.
Key words:  carbon nitride    nanorod clusters    ascorbic acid    electrochemical sensor
发布日期:  2025-05-29
ZTFLH:  TP212.6  
  R441  
通讯作者:  *刘秉鑫,博士,青海大学机械工程学院副教授、博士研究生导师。目前主要从事传感器敏感材料方面的研究。liubx408@nenu.edu.cn
乔丽娟,青海大学医学院实验师,西北农林科技大学生命科学学院微生物学专业在读博士。目前主要从事盐湖微生物次级代谢物的应用与研发以及呼出气、汗液传感器设计用于疾病的诊断等方面的研究。2014980007@qhu.edu.cn   
作者简介:  应智业,青海大学机械工程学院硕士研究生,在刘秉鑫副教授的指导下进行研究。目前主要研究领域为生物传感器敏感材料。
引用本文:    
应智业, 乔宇庭, 刘秉鑫, 乔丽娟. 氮化碳纳米棒簇的构筑及对抗坏血酸传感性能研究[J]. 材料导报, 2025, 39(11): 24030156-7.
YING Zhiye, QIAO Yuting, LIU Bingxin, QIAO Lijuan. Construction of Carbon Nitride Nanorod Clusters and Their Sensing Properties for Ascorbic Acid. Materials Reports, 2025, 39(11): 24030156-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030156  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24030156
1 Kashiouris M G, L’Heureux M, Cable C A, et al. Nutrients, 2020, 12(2), 292.
2 Roy-Lavallee J, Bahrani B, Weinstein M, et al. Journal of Adolescent Health, 2020, 67(4), 618.
3 Huang L, Cao Y, Diao D. Sensors and Actuators B:Chemical, 2019, 283, 556.
4 Zhang W, Liu L, Li Y, et al. Biosensors and Bioelectronics, 2018, 121, 96.
5 He X, Yang S, Pei Q, et al. ACS Sensors, 2020, 5(6), 1548.
6 Zhang S, Jiang H, Wang S, et al. ACS Applied Materials & Interfaces, 2023, 15(1), 469.
7 Wang L, Wang J, Fan C, et al. Chemical Engineering Journal, 2023, 455, 140609.
8 Min J, Tu J, Xu C, et al. Chemical Reviews, 2023, 123(8), 5049.
9 Jin X, Li G, Xu T, et al. Biosensors and Bioelectronics, 2022, 196, 113760.
10 Yang P, Wei G, Liu A, et al. npj Flexible Electronics, 2022, 6(1), 33.
11 Dhara K, Debiprosad R M. Analytical Biochemistry, 2019, 586, 113415.
12 Klepo L, Ascalic M, Medunjanin D, et al. SN Applied Sciences, 2021, 3(11), 837.
13 Wang H, Na X, Liu S, et al. Talanta, 2019, 201, 388.
14 Ribeiro M M A C, Prado A A, Domingues Batista A, et al. Journal of Separation Science, 2019, 42(3), 754.
15 Wu P, Huang Y, Zhao X, et al. Microchemical Journal, 2022, 181, 107780.
16 Parkook F, Shahvandi S K, Ghaedi M, et al. Diamond and Related Materials, 2024, 144, 110954.
17 Sher M, Khan S A, Shahid S, et al. Journal of Environmental Chemical Engineering, 2021, 9(4), 105366.
18 Wang Y, Liu L, Ma T, et al. Advanced Functional Materials, 2021, 31(34), 2102540.
19 Mangala Gowri V, Abraham John S. Journal of Electroanalytical Chemistry, 2021, 895, 115474.
20 Patra P C, Mohapatra Y N. Materials Letters, 2021, 302, 130374.
21 Jin Z, Zhang Q, Chen J, et al. Applied Catalysis B:Environmental, 2018, 234, 198.
22 Madaswamy S L, Wabaidur S M, Khan M R, et al. Macromolecular Research, 2021, 29(6), 411.
23 Yu S, Li J, Zhang Y, et al. Nano Energy, 2018, 50, 383.
24 He X, Bai S, Jiang J, et al. Chemical Engineering Journal Advances, 2021, 8, 100175.
25 Murugan N, Chan-Park M B, Sundramoorthy A K. Journal of the Electrochemical Society, 2019, 166(9), B3163.
26 Guanghan L, Xiaogang W, Yanhua L, et al. Talanta, 1999, 49(3), 511.
27 Wu T, Zhu Y, Song L, et al. Analytical Methods, 2022, 14(8), 859.
28 Li Y, Wu T, Song L, et al. Chemical Papers, 2022, 76(10), 6323.
29 Wang Z, Chen Y, Dong W, et al. Biosensors and Bioelectronics, 2018, 121, 257.
30 Baytak A K, Aslanoglu M. Arabian Journal of Chemistry, 2020, 13(5), 5539.
31 Lin D H, Jiang Y X, Wang Y, et al. Journal of Nanomaterials, 2008, 2008, 473791.
32 Lin D, Harris K D, Chan N W C, et al. Sensors and Actuators B:Chemical, 2018, 257, 324.
[1] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[2] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[3] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[4] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[5] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[6] 梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
[7] 朱杰, 凌敏, 马润东, 王瑞芬, 安胜利. 高活性BiOI/g-C3N4光催化剂的合成及性能提高机制[J]. 材料导报, 2024, 38(11): 23010115-7.
[8] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[9] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[10] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[11] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[12] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[13] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[14] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[15] 王琼, 张伊, 唐浩, 胡云楚, 王文磊. 量子点在光电化学传感器中的研究进展[J]. 材料导报, 2022, 36(18): 20090134-8.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed