Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24060141-7    https://doi.org/10.11896/cldb.24060141
  无机非金属及其复合材料 |
钢渣骨料/粉煤灰对ECC力学与介质传输性能的影响机理
李曈1, 王庆贺1,*, 任庆新2
1 沈阳建筑大学土木工程学院,沈阳 110168
2 佛山科学技术学院交通与土木建筑学院,广东 佛山 528225
Influence Mechanism of Steel Slag Aggregate/Fly Ash on Mechanical Properties and Mass Transport of Engineered Cementitious Composite (ECC)
LI Tong1, WANG Qinghe1,*, REN Qingxin2
1 School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2 School of Transportation, Civil Engineering & Architecture, Foshan University, Foshan 528225, Guangdong, China
下载:  全 文 ( PDF ) ( 16327KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究钢渣骨料与粉煤灰对工程水泥基复合材料(ECC)力学与介质传输性能的影响机理,通过孔隙率、抗压强度、拉伸性能、毛细吸水和抗氯离子侵蚀试验,研究了不同钢渣骨料替代率和不同粉煤灰掺量下ECC的力学性质与介质传输性能,并结合水化程度分析和微观形貌观察探究了粉煤灰/水泥胶凝体系的水化情况;同时基于非饱和毛细理论,建立了ECC相对含水量分布模型。结果表明:随着钢渣掺入,ECC强度和抗渗透性能得到增强,但拉伸应变能力有所下降;当粉煤灰与水泥质量比由1.2提高至2.0时,ECC极限拉伸应变提高了30.89%;钢渣提高ECC强度和抗渗透性能的主要原因是其对粉煤灰/水泥胶凝体系水化反应的促进作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李曈
王庆贺
任庆新
关键词:  工程水泥基复合材料  钢渣骨料  粉煤灰掺量  力学性能  介质传输    
Abstract: Aiming to explore the influence mechanism of steel slag aggregate and fly ash on mechanical properties and mass transport of engineered cementitious composite (ECC), the mechanical properties and mass transport performance of ECC with different steel slag replacement ratios and fly ash contents were studied by a series of tests, including porosity, compressive strength, tensile properties, capillary water absorption, and resistance to chloride ion erosion. The degree hydration of fly ash/cement cementitious system was explored by hydration degree analysis and microscopic morphological observation as the same. In addition, a prediction model for relative water content distribution in ECC was established based on unsaturated absorption theory. The results show that incorporation into steel slag enhances strength and permeability resistance but slightly reduced tensile strain capacity of the ECC. When the mass ratio of fly ash to cement increases from 1.2 to 2.0, the ultimate tensile strain of ECC increases by 30.89%. The main reason for steel slag to improve the strength and impermeability of ECC is the promoting effect on the hydration degree of fly ash/cement cementitious system.
Key words:  engineered cementitious composite    steel slag aggregate    fly ash content    mechanical property    mass transport
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51808351);沈阳市科学技术计划项目(21-108-9-34);辽宁省重点研发项目(2022JH2/101300130);辽宁省教育厅项目(JYTMS20231562)
通讯作者:  *王庆贺,博士,沈阳建筑大学土木工程学院教授、博士研究生导师。目前主要从事建筑及工业固废结构化应用等方面的研究。wangqinghe@sjzu.edu.cn   
作者简介:  李曈,沈阳建筑大学土木工程学院博士研究生,在任庆新教授、王庆贺教授的指导下进行研究。目前主要研究领域为超高延性混凝土。
引用本文:    
李曈, 王庆贺, 任庆新. 钢渣骨料/粉煤灰对ECC力学与介质传输性能的影响机理[J]. 材料导报, 2025, 39(19): 24060141-7.
LI Tong, WANG Qinghe, REN Qingxin. Influence Mechanism of Steel Slag Aggregate/Fly Ash on Mechanical Properties and Mass Transport of Engineered Cementitious Composite (ECC). Materials Reports, 2025, 39(19): 24060141-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060141  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24060141
1 Zhang T, Li X Q, Zhang L, et al. Materials Reports, 2023, 37(S1), 583 (in Chinese).
张田, 李晓琴, 张莉, 等. 材料导报, 2023, 37(S1), 583.
2 Li C X, Yin S P, Zhao J L. Journal of Building Materials, 2021, 24(4), 736 (in Chinese).
李传秀, 尹世平, 赵俊伶. 建筑材料学报, 2021, 24(4), 736.
3 Zhang J, Wang Q, Zhang J J, et al. Construction and Building Materials, 2017, 134, 664.
4 Li Y Z, Li J X, Yang E H, et al. Cement and Concrete Composites, 2022, 128, 104434.
5 Li Y Z, Li J X, Yang E H, et al. Cement and Concrete Composites, 2021, 123, 104204.
6 Lang L, Duan H, Chen B. Construction and Building Materials, 2019, 209, 95.
7 Sun X, Li Y, Wei X, et al. Construction and Building Materials, 2023, 400, 132703.
8 Saxena S, Tembhurkar A R. Construction and Building Materials, 2018, 165, 126.
9 Zhao C Y. Experimental research on fracture performance of steel slag concrete. Master's Thesis, Guangdong University of Technology, China, 2016 (in Chinese).
赵出云. 钢渣混凝土的断裂性能研究. 硕士学位论文, 广州工业大学, 2016.
10 Kanda T, Li V C. Journal of Advanced Concrete Technology, 2006, 4, 59.
11 Wang S X, Li V C. ACI Materials Journal, 2017, 104(3), 233.
12 Yang E H, Yang Y, Li V C. ACI Materials Journal, 2007, 104(6), 620.
13 Sun J, Shen X, Tan G, et al. Journal of Thermal Analysis and Calorimetry, 2018, 136, 565.
14 Jing W, Jiang J P, Ding S, et al. Molecules, 2020, 25, 4456.
15 Dong Q, Wang G T, Chen X Q, et al. Journal of Cleaner Production, 2021, 282, 124447.
16 Wang Q S, Yi Y, Ma G W, et al. Cement and Concrete Composites, 2019, 97, 357.
17 Costa F B P, Righi D P, Graeff A G, et al. Construction and Building Materials, 2019, 213, 505.
18 Pang B, Zhou Z, Cheng X, et al. Construction and Building Materials, 2016, 114, 162.
19 Chen X Q, Wang G T, Dong Q, et al. Journal of Cleaner Production, 2020, 254, 120149.
20 Zhou L L, Guo S C, Ma W B, et al. Construction and Building Materials, 2022, 331, 127280.
21 Guo Y C, Xie J H, Zheng W Y, et al. Construction and Building Materials, 2018, 192, 194.
22 Zeng Q, Li K, Fen-Chong T, et al. Cement and Concrete Research, 2012, 42, 194.
23 Chan Y W. Fiber/cement bond property modification in relation to interfacial microstructure. Ph. D. Thesis, Washtenaw County University of Michigan, USA, 1994.
24 Lin C, Kayali O, Morozov E V, et al. Construction and Building Materials, 2017, 149, 103.
25 Huang X Y, Ranade R, Ni W, et al. Construction and Building Materials, 2013, 44, 757.
26 Zhuang S Y, Wang Q, Zhang M Z, et al. Journal of Building Engineering, 2022, 53, 104602.
27 Wang F, Yang Y T, Yin S P. Journal of Building Engineering, 2021, 43, 102905.
28 Şahmaran M, Li V C. Cement and Concrete Research, 2009, 39, 1033.
29 Berry E E, Hemmings R T, Zhang M H, et al. ACI Materials Journal, 1994, 91(4), 382.
30 Li Q, Zhao Y, Chen H, et al. Construction and Building Materials, 2021, 303, 124463.
31 Wang L C. Journal of Hydraulic Engineering, 2009, 40(9), 1085 (in Chinese).
王立成. 水利学报, 2009, 40(9), 1085.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed