Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 25030081-8    https://doi.org/10.11896/cldb.25030081
  空间润滑材料 |
乙炔流量对四面体含氢非晶碳薄膜结构、机械特性和大气摩擦学性能的影响
历健1, 郝宏1, 周志勇2, 汪科良1, 郑玉刚1, 赵蒙1, 周晖1,*, 张凯锋1,*
1 兰州空间技术物理研究所真空技术与物理全国重点实验室,兰州 730000
2 北京空间飞行器总体设计部,北京 100094
Effects of Acetylene Flow Rate on the Structure,Mechanical Properties and Atmospheric Tribological Performances of ta-C:H Films
LI Jian1, HAO Hong1, ZHOU Zhiyong2, WANG Keliang1, ZHENG Yugang1, ZHAO Meng1, ZHOU Hui1,*, ZHANG Kaifeng1,*
1 National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China
2 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
下载:  全 文 ( PDF ) ( 22614KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用脉冲激光诱导阴极真空电弧(PLICVA)技术在乙炔气氛中制备四面体含氢非晶碳(ta-C:H)薄膜,通过调控乙炔流量(0~40 sccm)研究其对薄膜微观结构、机械特性及大气摩擦学性能的影响。结果表明,随着乙炔流量的增加,薄膜表面大颗粒密度显著降低,表面质量得到有效改善;薄膜中sp3 C杂化键含量呈梯度递减趋势;纳米硬度从不含乙炔的ta-C薄膜的57.95 GPa下降至乙炔流量40 sccm下沉积的ta-C:H薄膜的44.71 GPa。随着乙炔流量的增加,膜基结合强度呈先增后减的非线性变化;薄膜摩擦系数逐渐降低,磨损率逐渐升高。5 N载荷下,不含乙炔的ta-C薄膜表现出0.156的摩擦系数和3.22×10-16 m3·N-1·m-1的低磨损率;乙炔流量40 sccm下沉积的ta-C:H薄膜的摩擦系数降至0.128,但磨损率升至7.92×10-16 m3·N-1·m-1。机理分析表明,引入氢后薄膜表面悬键钝化作用增强,在摩擦磨损过程中形成转移膜,滑行界面石墨化产生协同润滑作用,使摩擦系数逐渐减小。本工作可为优化ta-C:H薄膜提供实验依据和理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
历健
郝宏
周志勇
汪科良
郑玉刚
赵蒙
周晖
张凯锋
关键词:  四面体含氢非晶碳(ta-C:H)  脉冲激光诱导阴极真空电弧(PLICVA)  乙炔流量  微观结构  机械特性  大气摩擦学性能    
Abstract: The tetrahedral hydrogenated amorphous carbon (ta-C:H) films were prepared by pulsed laser-induced cathodic vacuum arc (PLICVA) technique in acetylene atmosphere, and the effects of acetylene flow rate (0—40 sccm) on the structure, mechanical properties and atmospheric tribological performances of the films were systematically investigated. The results show that with increasing acetylene flow rate, a reduction in the density of large-size particles on the film surface is observed, accompanied by effective improvement of its quality. The sp3 C content shows a gradient decreasing trend, together with a decline of nanohardness from 57.95 GPa for ta-C films (0 sccm acetylene flow) to 44.71 GPa for ta-C:H films (40 sccm acetylene flow). Conversely, the film-substrate adhesion force demonstrates an initial increase followed by subsequent decrease. Atmospheric tribological tests reveal a progressive decrease in friction coefficient and increase in wear rate with increasing acetylene flow rate. Under a load of 5 N, the acetylene-free ta-C film exhibits a friction coefficient of 0.156 and a low wear rate of 3.22×10-16 m3·N-1·m-1, whereas the ta-C:H film deposited with 40 sccm acetylene flow shows a reduced friction coefficient of 0.128 but an elevated wear rate of 7.92×10-16 m3·N-1·m-1. Mechanism analysis reveals that hydrogen incorporation enhances dangling bond passivation, which takes synergistic lubricating effects with transfer film formation and sliding-induced interfacial graphitization, collectively reducing the friction coefficient. This study may provide critical experimental and theoretical insights for optimizing ta-C:H films.
Key words:  tetrahedral hydrogenated amorphous carbon (ta-C:H)    pulsed laser-induced cathodic vacuum arc (PLICVA)    acetylene flow rate    microstructure    mechanical property    atmospheric tribological performance
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  O613.71  
基金资助: 甘肃省青年科技基金(22JR5RA786)
通讯作者:  周晖,兰州空间技术物理研究所研究员、博士研究生导师。目前主要从事表面工程技术与空间摩擦学等方面的研究。 zhouhui510@sina.com
张凯锋,兰州空间技术物理研究所研究员、硕士研究生导师。目前主要从事超润滑薄膜技术、无机有机粘结涂层技术、新型空间润滑油脂与防爬层材料技术、柔性航天器集成技术等方面的研究。zhangkf510@sina.com   
作者简介:  历健,兰州空间技术物理研究所硕士研究生,在张凯锋研究员的指导下开展类金刚石碳基耐磨润滑薄膜制备技术的研究。
引用本文:    
历健, 郝宏, 周志勇, 汪科良, 郑玉刚, 赵蒙, 周晖, 张凯锋. 乙炔流量对四面体含氢非晶碳薄膜结构、机械特性和大气摩擦学性能的影响[J]. 材料导报, 2025, 39(15): 25030081-8.
LI Jian, HAO Hong, ZHOU Zhiyong, WANG Keliang, ZHENG Yugang, ZHAO Meng, ZHOU Hui, ZHANG Kaifeng. Effects of Acetylene Flow Rate on the Structure,Mechanical Properties and Atmospheric Tribological Performances of ta-C:H Films. Materials Reports, 2025, 39(15): 25030081-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25030081  或          https://www.mater-rep.com/CN/Y2025/V39/I15/25030081
1 Silva S R P, Xu S, Tay B K, et al. Thin Solid Films, 1996, 290, 317.
2 Zavaleyev V, Walkowicz J, Kuznetsova T, et al. Thin Solid Films, 2017, 638, 153.
3 Rajak D K, Kumar A, Behera A, et al. Applied Sciences, 2021, 11(10), 4445.
4 Neuville S. QScience Connect, 2014, 1, 8.
5 Wang L, Liu Y, Chen H, et al. Coatings, 2022, 12(2), 224.
6 Xue Q, Wang L. Diamond-like carbon-based film materials, Science Press, China, 2012, pp. 302 (in Chinese).
薛群基, 王立平. 类金刚石碳基薄膜材料, 科学出版社, 2012, pp. 302.
7 Zhang R, Yasuda D, Umehara N, et al. In:Conference Proceedings of ITS-IFToMM 2024. Springer Cham, US, 2024. pp. 149.
8 Braic M, Vladescu A, Balaceanu M, et al. Applied Surface Science, 2017, 400, 318.
9 Sohbatzadeh F, Safari R, Etaati G R, et al. Superlattices and Microstructures, 2016, 89, 231.
10 Priyanto B, Saleh M, Tunmee S, et al. Materials Science Forum, 2019, 966, 95.
11 Wang X, Zhao T, Sun F, et al. Diamond and Related Materials, 2015, 54, 26.
12 Lee K R, Baik Y J, Eun K Y, et al. Diamond and Related Materials, 1994, 3(10), 1230.
13 Yang Q, Yang S, Li Y S, et al. Diamond and Related Materials, 2007, 16(4-7), 730.
14 Sun Z, Xu S, Ostrikov K N. Diamond and Related Materials, 2002, 11(1), 92.
15 Capote G, Prioli R, Jardim P M, et al. Journal of Non-Crystalline Solids, 2004, 338, 503.
16 Popescu A, Stan G, Duta L, et al. Materials, 2015, 8(6), 3284.
17 Weiler M, Sattel S, Jung K, et al. Applied Physics Letters, 1994, 64(21), 2797.
18 Weiler M, Sattel S, Giessen T, et al. Physical Review B, 1996, 53(3), 1594.
19 Feng L, Li J, He Z, et al. Diamond and Related Materials, 2024, 142, 110854.
20 Manjunath K, Achutarao B, Harish D V N, et al. Transactions of the Indian Ceramic Society, 2023, 82(4), 295.
21 Li H, Sun P, Cheng D. Coatings, 2021, 11(7), 815.
22 Zimmermann B, Fietzke F, Klostermann H, et al. Surface and Coatings Technology, 2012, 212, 67.
23 Shen Y, Luo J, Liao B, et al. Diamond and Related Materials, 2022, 125, 108985.
24 Srisantirut T, Pengchan W. Key Engineering Materials, 2019, 814, 47.
25 Song J, Tian H, Li J, et al. Vacuum, 2024, 221, 112899.
26 Li J, Chae H. Korean Journal of Chemical Engineering, 2023, 40(6), 1268.
27 Lee S, Yoon S H, Kim J K, et al. Japanese Journal of Applied Physics, 2011, 50(1S1), 01AH01.
28 Fang T, Yamaki K, Koga K, et al. Thin Solid Films, 2018, 660, 891.
29 Salek A G, Le P Y, Partridge J G, et al. Applied Physics Letters, 2023, 122(18), 181904.
30 Cui W G, Lai Q B, Zhang L, et al. Surface and Coatings Technology, 2010, 205(7), 1995.
31 Wu C H, Tamor M A, Potter T J, et al. Journal of Applied Physics, 1990, 68(9), 4825.
32 Sumant A V, Gilbert P U P A, Grierson D S, et al. Diamond and Related Materials, 2007, 16(4-7), 718.
33 Ryaguzov A P, Nemkayeva R R, Alpysbaeva B E, et al. Journal of Physics:Conference Series, 2016, 751(1), 012027.
34 Erdemir A. Surface and Coatings Technology, 2001, 146, 292.
35 Erdemir A, Eryilmaz O L, Nilufer I B, et al. Diamond and Related Materials, 2000, 9(3-6), 632.
36 Feng X, Zheng Y, Wang K, et al. Surface and Interface Analysis, 2023, 55(10), 763.
37 Wu J B, Chen C Y, Shin C T, et al. Thin Solid Films, 2008, 517(3), 1141.
38 Wang K, Zhou H, Zhang K, et al. Vacuum, 2022, 206, 111555.
39 Jacob W. Thin Solid Films, 1998, 326(1-2), 1.
40 Wang L, Li L, Kuang X. Surface and Coatings Technology, 2018, 352, 33.
41 Ghadai R K, Kalita K, Mondal S C, et al. Materials and Manufacturing Processes, 2018, 33(16), 1905.
42 Robertson J. Materials Science and Engineering R, 2002, 37(4-6), 129.
43 Gilkes K W R, Prawer S, Nugent K W, et al. Journal of Applied Physics, 2000, 87(10), 7283.
44 Liu F X, Yao K L, Liu Z L. Diamond and Related Materials, 2007, 16(9), 1746.
45 Tay B K, Shi X, Liu E J, et al. Thin Solid Films, 1999, 346(1-2), 155.
46 Tay B K, Shi X, Liu E J, et al. Diamond and Related Materials, 1999, 8(7), 1328.
47 Zhang P, Tay B K, Lau S P. Diamond and Related Materials, 2003, 12(10-11), 2093.
48 Lifshitz Y, Kasi S R, Rabalais J W. Physical Review Letters, 1989, 62(11), 1290.
49 Robertson J. Diamond and Related Materials, 1993, 2(5-7), 984.
50 Davis C A. Thin Solid Films, 1993, 226(1), 30.
51 Lascovich J C, Scaglione S. Applied Surface Science, 1994, 78(1), 17.
52 Zhou K, Ke P, Li X, et al. Applied Surface Science, 2015, 329, 281.
53 Zhang H, Liu L, Wang Y, et al. Journal of Materials Science and Technology, 2007, 23(4), 491.
54 Kaindl R, Jakopic G, Resel R, et al. Materials Today Proceedings, 2015, 2(8), 4247.
55 Donnet C. Surface and Coatings Technology, 1998, 100, 180.
56 Liu H, Tanaka A, Umeda K. Thin Solid Films, 1999, 346(1-2), 162.
57 Su C, Lin J C. Surface Science, 1998, 406(1-3), 149.
58 Liu Y, Meletis E I. Journal of Materials Science, 1997, 32, 3491.
59 Huang L, Yuan J, Li C, et al. Surface and Coatings Technology, 2018, 353, 163.
60 Liu Y, Erdemir A, Meletis E I. Surface and Coatings Technology, 1996, 86, 564.
61 Fink J, Müller-Heinzerling T, Pflüger J, et al. Solid State Communications, 1983, 47(9), 687.
62 Racine B, Benlahsen M, Zellama K, et al. Applied Physics Letters, 1999, 75(22), 3479.
63 Leyland A, Matthews A. Wear, 2000, 246(1-2), 1.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[3] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[6] 尹雪亮, 王慧芳, 杨茜, 徐磊, 马北越. ZrO2添加对六铝酸钙陶瓷微观结构及力学性能的影响[J]. 材料导报, 2025, 39(15): 24110086-5.
[7] 牛旭婧, 郭晨怡, 吴家奕, 张佳豪, 朋改非, 丁宏. 碳化硅晶须对超高性能混凝土力学性能的影响[J]. 材料导报, 2025, 39(15): 24050200-8.
[8] 张永成, 曹锋, 郑明杰, 李双营, 欧阳浩. 青稞秸秆灰改性氯氧镁水泥的抗盐卤侵蚀性能与细微观结构[J]. 材料导报, 2025, 39(13): 24050241-8.
[9] 杨院霞, 郝刚领, 千佳祥, 王幸福, 许巧平, 王伟国. 硼元素及热轧对CuAlNi合金微观组织和力学性能的影响[J]. 材料导报, 2025, 39(13): 24070166-7.
[10] 聂光临, 刘磊仁, 刘一军, 左飞, 汪庆刚, 吴洋, 黄玲艳, 包亦望. 利用t-ZrO2分散特性的优化制备高强韧高导热ZTA陶瓷[J]. 材料导报, 2025, 39(11): 24020100-9.
[11] 肖海, 王光辉, 张伦, 张文琪, 丁瑜, 夏振尧. 棕榈纤维强化EICP加固三峡库区黏性紫色土抗剪性能试验研究[J]. 材料导报, 2025, 39(11): 24040113-6.
[12] 陈畅, 丁学成, 酒少武, 陈延信. 纤维特性对磷酸镁基免蒸压加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24050176-7.
[13] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[14] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[15] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed