Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 6-10    https://doi.org/10.11896/j.issn.1005-023X.2017.012.002
  材料研究 |
PVDF-HFP基凝胶电解质用于LiNi0.5Co0.2Mn0.3O2三元正极锂离子电池*
薛景元1, 侯博1, 莫岩1, 曹博凯1, 陈大明1, 李德1,2, 陈永1,2
1 海南大学材料与化工学院,南海海洋资源利用国家重点实验室,海南省硅锆钛资源综合开发与利用重点实验室, 海口 570228;
2 南开大学先进能源材料化学教育部重点实验室, 天津 300071
PVDF-HFP Based Gel Electrolyte for Lithium-ion Battery with LiNi0.5Co0.2Mn0.3O2 Cathode
XUE Jingyuan1, HOU Bo1, MO Yan1, CAO Bokai1, CHEN Daming1, LI De1,2, CHEN Yong1,2
1 State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Chemical Engineering, Hainan University, Haikou 570228;
2 Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education, Nankai University, Tianjin 300071
下载:  全 文 ( PDF ) ( 2031KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚偏氟乙烯-六氟丙烯(Poly (vinylidene fluoride-hexafluoropropylene), PVDF-HFP)为聚合物基体,新戊二醇二丙烯酸酯(Neopentyl glycol diacrylate, NPGDA)为交联剂,在引发剂偶氮二异丁腈(2,2′-Azobis(2-methylpropionitrile),AIBN)的作用下通过室温现场聚合法制备凝胶电解质用于锂离子电池。探索不同质量比PVDF-HFP/NPGDA对凝胶电解质性能和LiNi0.5-Co0.2Mn0.3O2三元正极锂离子电池性能的影响。结果表明,当质量比为1∶1时,凝胶电解质具有较高的离子电导率,为8.45 mS·cm-1,锂离子迁移数为0.78,电化学窗口为4.5 V。在电流密度30 mA·g-1恒流充放电,首次放电比容量为143 mAh·g-1,循环50次后仍高达135.3 mAh·g-1。电流密度为300 mA·g-1时,放电比容量为100.2 mAh·g-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛景元
侯博
莫岩
曹博凯
陈大明
李德
陈永
关键词:  聚偏氟乙烯-六氟丙烯  凝胶电解质  LiNi0.5Co0.2Mn0.3O2  锂离子电池  电化学性能    
Abstract: Gel electrolyte for lithium ion battery was prepared via room-temperature in-situ polymerization using poly(vinylidenefluoride-co-hexafluoro-propylene) (PVDF-HFP) as polymer matrix, neopentylglycoldiacrylate (NPGDA) as crosslinking agent, 2,2′-azobis(2-methylpropionitrile) (AIBN) as initiator. The effects of the mass ratio of PVDF-HFP/NPGDA on the performances of gel electrolyte and lithium ion batteries were investigated. The results showed that the gel electrolyte with the PVDF-HFP/NPGDA mass ratio of 1∶1 had a high ionic conductivity of 8.45 mS·cm-1, a lithium ion transport number of 0.78 and an electrochemical potential window of 4.5 V, as well as a good compatibility with lithium anode. The initial discharge specific capacity was 143 mAh·g-1 at a current density of 30 mA·g-1, and the retention capacity was up to 135.3 mAh· g-1 after 50 cycles. The discharge speci-fic capacity of the battery was 100.2 mAh· g-1 at a current density of 300 mA· g-1.
Key words:  PVDF-HFP    gel electrolyte    LiNi0.5Co0.2Mn0.3O2    lithium-ion battery    electrochemical performance
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TM911.3  
基金资助: *国家自然科学基金(51162006;51362009);海南省重点项目(ZDXM2015118);国际科技合作专项(KJHZ2015-02);中央引导地方科技发展专项资金项目(ZY2016HN07);海南大学科研启动基金(kyqd1539)
通讯作者:  陈大明:通讯作者,男,1986年生,讲师,主要从事电解质材料和锂离子薄膜电池研究 E-mail:daming_chen@163.com 陈永:通讯作者,男,1970年生,教授,博士研究生导师,主要从事锂离子电池和炭材料研究 E-mail:ychen2002@163.com   
作者简介:  薛景元:男,1991年生,硕士研究生,主要研究方向为新能源材料 E-mail:jyx19910715@163.com
引用本文:    
薛景元, 侯博, 莫岩, 曹博凯, 陈大明, 李德, 陈永. PVDF-HFP基凝胶电解质用于LiNi0.5Co0.2Mn0.3O2三元正极锂离子电池*[J]. 《材料导报》期刊社, 2017, 31(12): 6-10.
XUE Jingyuan, HOU Bo, MO Yan, CAO Bokai, CHEN Daming, LI De, CHEN Yong. PVDF-HFP Based Gel Electrolyte for Lithium-ion Battery with LiNi0.5Co0.2Mn0.3O2 Cathode. Materials Reports, 2017, 31(12): 6-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.002  或          https://www.mater-rep.com/CN/Y2017/V31/I12/6
1 Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices [J]. Science,2011,334(6058):928.
2 Zaghib K, Armand M, Gauthier M. Electrochemistry of anodes in solid-state Li-ion polymer batteries [J]. J Neurochem,1998,145(9):3135.
3 Dias F B, Plomp L, Veldhuis J B J. Trends in polymer electrolytes for secondary lithium batteries [J]. J Power Sources,2000,88(2):169.
4 Yu Z X, Xu T T, Xing T F, et al. A Raman spectroscopy investigation of the interactions of LiBOB with γ-BL as electrolyte for advanced lithium batteries [J]. J Power Sources,2010,195(13):4285.
5 Armand M B, Chabano J M, Duclot M J. Fast ion transport in solids [M]. New York: North Holland,1979:131.
6 Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide) [J]. Polymer,1973,14(11):589.
7 Song J Y, Wang Y Y, Wan C C. Review of gel-type polymer electrolytes for lithium-ion batteries [J]. J Power Sources,1999,77(2):183.
8 Hyung Y E, Moon S I, Yum D H, et al. Fabrication and evaluation of 100 Ah cylindrical lithium ion battery for electric vehicle applications [J]. J Power Sources,1999,81(81):842.
9 Ni′mah Y L, Cheng M Y, Cheng J H, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries [J]. J Power Sources,2015,278(278):375.
10 Kurc B. Gel electrolytes based on poly(acrylonitrile)/sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries [J]. Electrochim Acta,2014,125(12):415.
11 Kufian M Z, Aziz M F, Shukur M F, et al. PMMA-LiBOB gel electrolyte for application in lithium ion batteries [J]. Solid State Ionics,2012,208(3):36.
12 Deng F L, Wang X E, He D, et al. Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries [J]. J Membr Sci,2015,491:82.
13 Isa K B M, Osman Z, Arof A K, et al. Lithium ion conduction and ion-polymer interaction in PVDF-HFP based gel polymer electrolytes [J]. Solid State Ionics,2014,268(12):288.
14 Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414(6861):359.
15 Ding Y H, Zhang P, Jiang Y, et al. Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3-Mn1/3O2 for lithium-ion battery [J]. Solid State Ionics,2007,178(13-14):967.
16 Myung S T, Lee M H, Komaba S, et al. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for li-thium secondary battery [J]. Electrochim Acta,2005,50(24):4800.
17 Chen Y, Wang G X, Konstantinov K, et al. Synthesis and characterization of LiCoxMnyNi1-x-yO2 as a cathode material for secondary lithium batteries [J]. J Power Sources,2003,119-121(6):184.
18 Li Y J, Han Q, Ming X Q, et al. Synthesis and characterization of LiNi0.5Co0.2Mn0.3O2 cathode material prepared by a novel hydrothermal process [J]. Ceram Int,2014,40(9):14933.
19 Xie H L, Liao Y H, Sun P, et al. Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery [J]. Electrochim Acta,2014,127(5):327.
20 Sun P, Liao Y H, Xie H L, et al. Poly(methyl methacrylate-acrylonitrile-ethyl acrylate) terpolymer based gel electrolyte for LiNi0.5-Mn1.5O4 cathode of high voltage lithium ion battery [J]. J Power Sources,2014,269:299.
21 Ghosh A, Wang C S, Kofinas P. Block copolymer solid battery electrolyte with high Li-ion transference number [J]. J Electrochem Soc,2010,157(7):A846.
22 Kang Y, Lee W, Suh D H, et al. Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo(ethylene oxide): Ionic conductivity and electrochemical properties [J]. J Power Sources,2003,119-121(3):448.
23 Dabrowska A, Wieczorek W. Conductivity and phase structure of blend based proton polymeric electrolytes I: Complexes with phosphoric acid [J]. Mater Sci Eng B,1994,22:107.
24 Ding M S, Xu K, Zhang S S, et al. Liquid-solid phase diagrams of binary carbonates for lithium batteries [J]. J Electrochem Soc,2000,147(5):1688.
25 Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries [J]. Electrochim Acta,2010,55(22):6332.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[3] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[4] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[5] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[6] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[7] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[8] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[9] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[10] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[11] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[12] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[13] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[14] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[15] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed