Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24100235-13    https://doi.org/10.11896/cldb.24100235
  无机非金属及其复合材料 |
碳化硅单晶制备方法及缺陷控制研究进展
杨皓1,2, 李太1,2, 张广鑫1,2, 吕国强1,2,*, 陈秀华3
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 云南省硅工业工程研究中心,昆明 650093
3 云南大学材料与能源学院,昆明 650091
Research Progress on Preparation Methods and Defect Control of Silicon Carbide Single Crystal
YANG Hao1,2, LI Tai1,2, ZHANG Guangxin1,2, LYU Guoqiang1,2,*, CHEN Xiuhua3
1 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Yunnan Silicon Industry Engineering Research Center, Kunming 650093, China
3 School of Materials and Energy, Yunnan University, Kunming 650091, China
下载:  全 文 ( PDF ) ( 38907KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳化硅(SiC)作为第三代半导体具有禁带宽度大、载流子迁移率高、热导率高和稳定性良好等优异特性,在电力电子器件领域尤其是高温、高频、高功率等应用场景下有着巨大潜力。目前用于SiC晶体生长的主要技术包括物理气相传输(PVT)法、高温化学气相沉积(HTCVD)法和顶部籽晶溶液生长(TSSG)法。在SiC单晶生长和外延过程中,不可避免地会产生各种类型的缺陷,这些缺陷对半导体器件的性能会产生显著影响,具体表现为击穿电压降低、漏电流增加以及导通电阻变化等,这些性能的变化不仅会降低器件的效率和可靠性,还可能导致器件完全失效。因此,为了提高SiC半导体器件的良率和性能,在器件制造之前降低和控制SiC晶体生长过程中产生的各种缺陷变得非常重要。本文对当前SiC单晶的制备方法、SiC晶体生长过程中产生的缺陷及其检测技术进行了归纳总结,分析研究了SiC晶体生长过程中产生的缺陷之间的转化及影响因素,并讨论了降低SiC单晶缺陷密度的方法,最后对SiC单晶生长过程中缺陷的控制技术发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨皓
李太
张广鑫
吕国强
陈秀华
关键词:  宽禁带半导体  碳化硅  晶体生长  缺陷  数值模拟    
Abstract: As the third generation semiconductor, silicon carbide (SiC) has excellent characteristics such as wide band gap, high carrier mobility, high thermal conductivity and good stability. It has great potential in the field of power electronic devices, especially in high temperature, high frequency, high power and other application scenarios. The primary techniques currently used for SiC crystal growth include physical vapor transport (PVT), high-temperature chemical vapor deposition (HTCVD), and top-seed solution growth (TSSG). During the growth and epitaxy of SiC single crystals, various types of defects inevitably arise, which can significantly affect the performance of semiconductor devices. This is manifested in reduced breakdown voltage, increased leakage current, and changes in on-resistance. Such performance variations not only diminish the efficiency and reliability of the devices but may also lead to complete device failure. Therefore, in order to improve the yield and performance of SiC semiconductor devices, it is very important to reduce and control various defects generated during the growth of SiC crystals before device fabrication. In this paper, the current preparation methods of SiC single crystal, the defects produced in the growth process of SiC crystal and their detection technology are summarized. The transformation and influencing factors between the defects produced in the growth process of SiC crystal are analyzed and studied, and the methods to reduce the defect density of SiC single crystal are discussed. Finally, the development direction of defect control technology in the growth process of SiC single crystal is prospected.
Key words:  wide bandgap semiconductors    silicon carbide    crystal growth    defects    numerical simulation
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  O781  
  O782  
  O77+1  
  O77+2  
  O77+9  
基金资助: 云南省重大科技专项(202302AB080004);云南大学“双一流”建设联合专项-重大项目(202201BF070001-018)
通讯作者:  *吕国强,昆明理工大学冶金与能源工程学院教授、博士研究生导师。主要研究方向为硅冶金与硅材料制备过程的传热传质。lvguoqiang_ok@aliyun.com   
作者简介:  杨皓,昆明理工大学冶金与能源工程学院硕士研究生,在吕国强老师的指导下进行研究。目前主要从事液相法碳化硅单晶生长过程数值模拟优化研究。
引用本文:    
杨皓, 李太, 张广鑫, 吕国强, 陈秀华. 碳化硅单晶制备方法及缺陷控制研究进展[J]. 材料导报, 2026, 40(2): 24100235-13.
YANG Hao, LI Tai, ZHANG Guangxin, LYU Guoqiang, CHEN Xiuhua. Research Progress on Preparation Methods and Defect Control of Silicon Carbide Single Crystal. Materials Reports, 2026, 40(2): 24100235-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100235  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24100235
1 Lely J A. Berichte der Deutschen Keramischen Gesellschaft, 1955, 32, 229.
2 Tairov Y M, Tsvetkov V F. Journal of Crystal Growth, 1978, 43(2), 209.
3 Liang G, Qian H, Su Y, et al. China Foundry, 2023, 20(2), 159.
4 Yang Y B, Wang J, Wang Y M. Journal of Crystal Growth, 2018, 504, 31.
5 Nishizawa S I, Kato T, Kitou Y, et al. Materials Science Forum, 2004, 457-460(I), 29.
6 Meyer C, Philip P. Crystal Growth & Design, 2005, 5(3), 1145.
7 Chen X, Nishizawa S, Kakimoto K. Journal of Crystal Growth, 2010, 312(10), 1697.
8 Yan J Y, Chen Q S, Jiang Y N, et al. Journal of Crystal Growth, 2014, 385, 34.
9 Choi J W, Kim J G, Jang B K, et al. Materials Science Forum, 2019, 963, 18.
10 Zhang F, Yang K, Liu X, et al. In: 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors. China, 2020, pp. 19.
11 Tymicki E, Grasza K, Racka K, et al. Materials Science Forum, 2009, 615, 15.
12 Yeo I G, Lee T W, Park J H, et al. Materials Science Forum, 2011, 679, 40.
13 Shin H W, Lee H J, Kim H J, et al. Materials Science Forum, 2016, 858, 113.
14 Makarov Y, Litvin D, Vasiliev A, et al. Materials Science Forum, 2016, 858, 101.
15 Fan W, Qu H, Chang S I, et al. Materials Science Forum, 2019, 963, 22.
16 Zhang S, Fu G, Cai H, et al. Materials, 2023, 16(2), 767.
17 Xu B, Han X, Xu S, et al. Journal of Crystal Growth, 2023, 614, 127238.
18 Chen Y, Chen S, Yang B. Crystal Research and Technology, 2023, 58(12), 2300147.
19 Hoshino N, Kamata I, Tokuda Y, et al. Journal of Crystal Growth, 2017, 478, 9.
20 Ellison A, Magnusson B, Sundqvist B, et al. Materials Science Forum, 2004, 457, 9.
21 Tokuda Y, Makino E, Sugiyama N, et al. Journal of Crystal Growth, 2016, 448, 29.
22 Kim S, Suh S, Jeong J K, et al. Journal of Nanoscience and Nanotech-nology, 2017, 17(11), 8344.
23 Hoshino N, Kamata I, Tokuda Y, et al. Applied Physics Express, 2014, 7(6), 065502.
24 Kito Y, Makino E, Ikeda K, et al. Materials Science Forum, 2006, 527, 107.
25 Jeong S M, Kim K H, Yoon Y J, et al. Journal of Crystal Growth, 2012, 357, 48.
26 Kang Y, Yoo C H, Nam D H, et al. Journal of Crystal Growth, 2018, 485, 78.
27 Tokuda Y, Hoshino N, Kuno H, et al. Materials Science Forum, 2020, 1004, 5.
28 Okamoto T, Kanda T, Tokuda Y, et al. Materials Science Forum, 2020, 1004, 14.
29 Kamata I, Hoshino N, Tokuda Y, et al. Materials Science Forum, 2016, 858, 61.
30 Ujihara T, Maekawa R, Tanaka R, et al. Journal of Crystal Growth, 2008, 310(7-9), 1438.
31 Hofmann D H, Müller M H. Materials Science and Engineering: B, 1999, 61, 29.
32 Daikoku H, Kado M, Seki A, et al. Crystal Growth & Design, 2016, 16(3), 1256.
33 Harada S, Hatasa G, Murayama K, et al. Materials Science Forum, 2017, 897, 32.
34 Narumi T, Kawanishi S, Yoshikawa T, et al. Journal of Crystal Growth, 2014, 408, 25.
35 Hyun K Y, Taishi T, Suzuki K, et al. Materials Science Forum, 2018, 924, 43.
36 Kusunoki K, Kamei K, Okada N, et al. Materials Science Forum, 2006, 527, 119.
37 Kusunoki K, Okada N, Kamei K, et al. Journal of Crystal Growth, 2014, 395, 68.
38 Choi S H, Kim Y G, Shin Y J, et al. Materials Science Forum, 2018, 924, 27.
39 Mercier F, Nishizawa S. Journal of Crystal Growth, 2011, 318(1), 385.
40 Kawanishi S, Kamiko M, Yoshikawa T, et al. Crystal Growth & Design, 2016, 16(9), 4822.
41 Zhu C, Harada S, Seki K, et al. Crystal Growth & Design, 2013, 13(8), 3691.
42 Chen P C, Miao W C, Ahmed T, et al. Nanoscale Research Letters, 2022, 17(1), 30.
43 Heydemann V D, Schulze N, Barrett D L, et al. Applied Physics Letters, 1996, 69(24), 3728.
44 Nishiguchi T, Furusho T, Isshiki T, et al. In: 12th International Confe-rence on Silicon Carbide and Related Materials. Japan, 2009, pp. 600.
45 Ohtani N. Wide Bandgap Semiconductors for Power Electronics: Materials, Devices, Applications, 2021, 1, 1.
46 Matsuhata H, Sugiyama N, Chen B, et al. Microscopy, 2017, 66(2), 95.
47 Feng G, Suda J, Kimoto T. Physica B: Condensed Matter, 2009, 404(23-24), 4745.
48 Guziewski M, Montes de Oca Zapiain D, Dingreville R, et al. ACS Applied Materials & Interfaces, 2021, 13(2), 3311.
49 Wutimakun P, Buteprongjit C, Morimoto J. Journal of Crystal Growth, 2009, 311(14), 3781.
50 Ohtani N. ECS Transactions, 2011, 41(8), 253.
51 Yamamoto Y, Harada S, Seki K, et al. Applied Physics Express, 2012, 5(11), 115501.
52 Hong M H, Samant A V, Pirouz P. Philosophical Magazine A, 2000, 80(4), 919.
53 Zhao L. Nanotechnology and Precision Engineering, 2020, 3(4), 229.
54 Henry A, ul Hassan J, Bergman J P, et al. Chemical Vapor Deposition, 2006, 12(8-9), 475.
55 Benamara M, Zhang X, Skowronski M, et al. Applied Physics Letters, 2005, 86(2),021905.
56 Hassan J, Henry A, McNally P J, et al. Journal of Crystal Growth, 2010, 312(11), 1828.
57 Nakashima S, Mitani T, Tomobe M, et al. AIP Advances, 2016, 6(1), 015207.
58 Kimoto T. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2), 329.
59 Das H, Melnychuk G, Koshka Y. Journal of Crystal Growth, 2010, 312(12-13), 1912.
60 Kimoto T, Itoh A, Matsunami H, et al. Journal of Applied Physics, 1997, 81(8), 3494.
61 Syväjärvi M, Yakimova R, Janzén E. Journal of Crystal Growth, 2002, 236(1-3), 297.
62 Zhang Z, Cai H, Gan D, et al. CrystEngComm, 2019, 21(7), 1200.
63 Isshiki T, Hasegawa M. Materials Science Forum, 2015, 821, 307.
64 Konishi K, Yamamoto S, Nakata S, et al. Journal of Applied Physics, 2013, 114(1),014504.
65 Hidalgo P, Ottaviani L, Idrissi H, et al. European Physical Journal-Applied Physics, 2004, 27(1-3), 231.
66 Chikvaidze G, Mironova-Ulmane N, Plaude A, et al. Latvian Journal of Physics and Technical Sciences, 2014, 51(3), 51.
67 Feng X, Zang Y. In: 3rd International Conference on Mechatronics and Information Technology (ICMIT). China, 2016, pp. 829.
68 Luo H, Li J, Yang G, et al. ACS Applied Electronic Materials, 2022, 4(4), 1678.
69 Mahajan S, Rokade M V, Ali S T, et al. Materials Letters, 2013, 101, 72.
70 Katsuno M, Ohtani N, Takahashi J, et al. Silicon carbide, iii-nitrides and related materials, pts 1 and 2, Pensl G, Morkoc H, Monemar B, Janzen E, Eds. 1998, pp. 837.
71 Steckl A J, Roth M D, Powell J A, et al. Applied Physics Letters, 1993, 62(20), 2545.
72 Fukushima Y, Chanthaphan A, Hosoi T, et al. Applied Physics Letters, 2015, 106(26), 261604.
73 Yao Y Z, Ishikawa Y, Sugawara Y, et al. Japanese Journal of Applied Physics, 2011, 50(7R), 075502.
74 Olivier E J, Neethling J H. International Journal of Refractory Metals and Hard Materials, 2009, 27(2), 443.
75 Zhu C, Harada S, Seki K, et al. Crystal Growth & Design, 2013, 13(8), 3691.
76 Maximenko S I, Freitas J A, Klein P B, et al. Applied Physics Letters, 2009, 94(9), 092101.
77 Senzaki J, Hayashi S, Yonezawa Y, et al. In: 2018 IEEE International Reliability Physics Symposium (IRPS). Burlingame, 2018, pp.3B. 3-1.
78 Ma P, Ni J, Sun J, et al. Applied Optics, 2020, 59(6), 1746.
79 Hundhausen M, Püsche R, Röhrl J, et al. Physica Status Solidi B-Basic Solid State Physics, 2008, 245(7), 1356.
80 Tajima M, Higashi E, Hayashi T, et al. In: International Conference on Silicon Carbide and Related Materials (ICSCRM 2005). Pittsburgh, 2006, pp. 711.
81 Peng H, Liu Y, Ailihumaer T, et al. ECS Transactions, 2021, 104(7), 147.
82 Feng X, Zang Y. In: 3rd International Conference on Mechatronics and Information Technology (ICMIT). China, 2016, pp. 829.
83 Matsuhata H, Yamaguchi H, Sekiguchi T, et al. Electrical Engineering in Japan, 2016, 197(3), 3.
84 Yazdanfar M, Leone S, Pedersen H, et al. In: 14th International Confe-rence on Silicon Carbide and Related Materials (ICSCRM 2011). Cleveland, 2012, pp. 109.
85 Dong L, Sun G S, Yu J, et al. In: 15th International Conference on Silicon Carbide and Related Materials (ICSCRM). Japan, 2014, pp. 354.
86 Kojima K, Nishizawa S, Kuroda S, et al. Journal of Crystal Growth, 2005, 275(1-2), e549.
87 Kamata I, Tsuchida H, Jikimoto T, et al. Japanese Journal of Applied Physics, 2000, 39(12R), 6496.
88 Nakamura D, Kimoto T. Japanese Journal of Applied Physics, 2020, 59(9), 095502.
89 Dhanaraj G, Chen Y, Chen H, et al. In: Symposium on Silicon Carbide-Materials, Processing and Devices held at the 2006 MRS Spring Meeting. San Francisco, 2006, pp. 157.
90 Wang H, Wu F, Byrappa S, et al. Applied Physics Letters, 2012, 100(17), 172105.
91 Harada S, Yamamoto Y, Seki K, et al. Acta Materialia, 2014, 81, 284.
92 Kimoto T. Japanese Journal of Applied Physics, 2015, 54(4), 040103.
93 Nakamura D, Gunjishima I, Yamaguchi S, et al. Nature, 2004, 430(7003), 1009.
94 Chen X F, Zhang F S, Yang X L, et al. Materials Science Forum, 2017, 897, 19.
95 Komatsu N, Mitani T, Hayashi Y, et al. Materials Science Forum, 2019, 963, 71.
[1] 牛舒楠, 郑丽君, 高艺萌, 曲佳音, 王继福, 王鹏. 以碳化硅为发泡剂的铁尾矿多孔陶瓷的制备及性能研究[J]. 材料导报, 2026, 40(2): 24120220-7.
[2] 冯凯斌, 刘润聪, 李思龙, 吴云飞, 那贤昭, 王晓东. 基于非激励的连铸坯振痕检测方法[J]. 材料导报, 2026, 40(1): 25010165-10.
[3] 曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
[4] 吴学虎, 孙立贤, 徐芬, 李彬, 方淞文, 张靖, 陈翔, 宋领君, 卢俊铭, 高源, 杜毛湛, 徐如丹. 具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究[J]. 材料导报, 2025, 39(7): 24030138-7.
[5] 周乃吉, 吴修胜, 温红娟, 施思嘉, 曹菊芳. 增强钛酸铋钠基陶瓷储能研究进展[J]. 材料导报, 2025, 39(6): 24010096-17.
[6] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[7] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[8] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[9] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[10] 韦浪浪, 田秀刚, 梁健, 苗斌, 杨峰, 李杨, 郑士建. 基于聚焦离子束切割制样的热镀锌汽车钢板漏镀缺陷结构表征与成因分析[J]. 材料导报, 2025, 39(4): 23080246-7.
[11] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[12] 王子照. 土工格室加固道床的影响因素研究[J]. 材料导报, 2025, 39(24): 25010185-6.
[13] 秦龙, 何建丽, 董万鹏, 黄少波, 王辉, 王志海. 镁合金高温本构模型研究进展[J]. 材料导报, 2025, 39(23): 24110218-8.
[14] 孙彦彬, 郭思臣, 徐天时. 周期性胞壁缺失对蜂窝夹层板平压力学性能影响分析及预测[J]. 材料导报, 2025, 39(23): 24120075-7.
[15] 马骏杰, 冯治国, 康分行, 刘勇. 基于硬度的TA1薄壁圆管钉套本构模型研究[J]. 材料导报, 2025, 39(23): 24090094-8.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed