Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24120233-8    https://doi.org/10.11896/cldb.24120233
  高分子与聚合物基复合材料 |
人工智能方法在RTM工艺仿真中的应用
姜劲驰1, 李文晓1,*, 方可言2
1 同济大学航空航天与力学学院,上海 200082
2 中国电力工程顾问集团华东电力设计院有限公司,上海 200063
The Application of Artificial Intelligence Methods in RTM Simulation
JIANG Jinchi1, LI Wenxiao1,*, FANG Keyan2
1 School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200082, China
2 East China Electric Power Design Institute Co., Ltd., of China Power Engineering Consulting Group, Shanghai 200063, China
下载:  全 文 ( PDF ) ( 17477KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 树脂传递模塑成型(Resin transfer molding,RTM)工艺仿真对于提高成型质量,降低RTM工艺成本至关重要。将人工智能方法引入RTM工艺仿真中,可以不必求解复杂的多尺度渗流模型就能够获得对RTM模具设计的指导性意见。本文综述了以遗传算法和机器学习方法为主的人工智能方法在RTM工艺仿真中的研究现状,并讨论了该领域存在的问题及发展方向。遗传算法主要被应用于注胶口及流道配置优化方面,但在复杂问题中收敛性较差,与其他局部搜索算法结合的方法展现出解决复杂问题的潜力;机器学习方法的应用研究处于起步阶段,目前主要被应用于注射压力、浸渍质量、渗透率预测等方面,只对简单二维充模问题进行了研究;其他人工智能方法通常计算成本低,但难以验证最优性。人工智能方法的问题集中在迭代/训练所需的数据集的获取成本方面。其在三维复杂几何结构及非均匀渗透率制件方面的应用是未来的重要发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜劲驰
李文晓
方可言
关键词:  复合材料  树脂传递模塑成型(RTM)  充模仿真  参数优化  人工智能    
Abstract: The simulation of resin transfer molding (RTM) is crucial for reducing the cost of RTM process. Introducing artificial intelligence methods into the RTM process simulation can provide guiding opinions for the design of RTM molds without solving complex models of multi-scale flow. This paper reviews the research status of artificial intelligence algorithms, mainly including genetic algorithms and machine learning methods in RTM simulation, and discusses the existing problems and development directions of artificial intelligence methods in the field of RTM simulation. Genetic algorithms are mainly applied in the optimization of injection gates and flow channel configurations, but have poor convergence in complex problems. The method, combined with other local search algorithms, shows potential for solving complex problems. The application research of machine learning methods is in its infancy. At present, it is mainly applied in the prediction of injection pressure, impregnation quality, permeability, etc., and only simple two-dimensional problems have been studied. Other artificial intelligence methods usually have low computational cost, but it is difficult to verify optimality. The main problems of artificial intelligence methods are concentrated in the acquisition cost of the data set required for iteration/training. Their application in three-dimensional complex geometric composites and composites with non-uniform permeability is an important development direction in the future.
Key words:  composite    resin transfer molding(RTM)    simulation    parameter optimization    artificial intelligence
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TB322  
基金资助: 上海市空间飞行器机构重点实验室开放课题(YYHT-F805201904009)
通讯作者:  * 李文晓,同济大学航空航天与力学学院副教授、硕士研究生导师。主要从事聚合物基复合材料以及复合材料泡沫夹层结构的设计、制备与性能的研究。wenxiaoli@tongji.edu.cn   
作者简介:  姜劲驰,同济大学航空航天与力学学院硕士研究生,在李文晓副教授的指导下进行研究。目前主要研究领域为复合材料工艺。
引用本文:    
姜劲驰, 李文晓, 方可言. 人工智能方法在RTM工艺仿真中的应用[J]. 材料导报, 2026, 40(1): 24120233-8.
JIANG Jinchi. The Application of Artificial Intelligence Methods in RTM Simulation. Materials Reports, 2026, 40(1): 24120233-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120233  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24120233
1 De B, Bera M, Bhattacharjee D, et al. Progress in Materials Science, 2024, 146, 101326.
2 Jiang S, Bao J, Zhang L, et al. Aeronautical Manufacturing Technology, 2021, 64(5), 70(in Chinese).
蒋诗才, 包建文, 张连旺, 等. 航空制造技术, 2021, 64(5), 70.
3 Facciotto S, Simacek P, Advani S G, et al. Composites Part B: Engineering, 2021, 214, 108735.
4 Zade A, Kuppusamy R R P. Materials Today: Proceedings, 2019, 19, 329.
5 Amaoui A E, Hattabi M. International Journal of Engineering Trends and Technology, 2023, 71, 211.
6 Abdoli H, Herman T, Bickerton S. Composite Part A: Applied Science and Manufacturing, 2022, 162, 107167.
7 Kracke C, Nonn A, Koch C, et al. Composites Part A: Applied Science and Manufacturing, 2018, 106, 70.
8 Poodts E, Minak G, Mazzocchetti L, et al. Composites Part B: Engineering, 2014, 56, 673.
9 Chai B X, Eisenbart B, Nikzad M, et al. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106540.
10 Chai B X, Eisenbart B, Nikzad M, et al. Materials, 2023, 16, 7580.
11 Trofimov A, Ravey C, Droz N, et al. Composites Part A: Applied Science and Manufacturing, 2023, 169, 107499.
12 May D, Mitschang P. Composites Communications, 2021, 27, 100881.
13 Zhang J, Yang W, Li Y. Advances in Mechanics, 2021, 51(4), 865 (in Chinese).
张峻铭, 杨伟东, 李岩. 力学进展, 2021, 51(4), 865.
14 Masrouri M, Zhao Q. Theoretical and Applied Mechanics Letters, 2024, 14, 100492.
15 Zhou Y, Li M, Wang S, et al. Journal of Aeronautical Materials, 2024, 44(5), 17 (in Chinese).
周钰博, 李敏, 王绍凯, 等. 航空材料学报, 2024, 44(5), 17.
16 Caglar B, Broggi G, Ali M A, et al. Composite Part A: Applied Science and Manufacturing, 2022, 158, 106973.
17 Wang Y, Wang K, Zhang C. Composites Part B: Engineering, 2024, 285, 111740.
18 Jafari P, Zhang R, Huo S, et al. Composites Communications, 2024, 45, 101806.
19 Zhang J, Pantelelis N G. In: Conference Record of the 2011 International Conference on Electric Information and Control Engineering. Wuhan, China, 2011, pp. 2363.
20 Cassola S, Duhovic M, Schmidt T, et al. Composites Part B: Engineering, 2022, 246, 110208.
21 Abueidda D W, Almasri M, Ammourah R, et al. Composite Structures, 2019, 227, 111264.
22 Ali M A, Guan Q, Umer R, et al. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106131.
23 Wang Y, Xu S, Bwar K H, et al. Composites Communications, 2024, 48, 101960.
24 Brunton S L, Kuts J N, Manohar K, et al. AAIA Journal, 2021, 59, 2820.
25 Engelen J E, Hoos H H. Machine Learning, 2020, 109, 373.
26 Syerko E, Schmidt T, May D, et al. Composites Part A: Applied Science and Manufacturing, 2023, 167, 107397.
27 Liu H, He P, Li W, et al. Engineering Plastics Application, 2019, 47(9), 149(in Chinese).
刘昊鑫, 贺鹏飞, 李文晓, 等. 工程塑料应用, 2019, 47(9), 149.
28 Facciotto S, Simacek P, Advani S G, et al. Composites Part A: Applied Science and Manufacturing, 2023, 173, 107675.
29 Xu X, Wei K, Mei M, et al. Composites Science and Technology, 2024, 255, 110710.
30 Trofimov A, Ravey C, Droz N, et al. Composites Part A: Applied Science and Manufacturing, 2023, 169, 107499.
31 Stieber S, Schröter N, Fauster E, et al. In: Conference Record of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). Pasadena, USA, 2021, pp. 694.
32 Vaswani A, Shazeer N, Parmar N, et al. In: Conference Record of the 31st International Conference on Neural Information Processing Systems. CA, USA, 2017, pp. 6000.
33 Stieber S, Schröter N, Fauster E, et al. The International Journal of Advanced Manufacturing Technology, 2023, 128, 1517.
34 Struzziero G, Teuwen J J E, Skordos A A. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105499.
35 Young W B. Journal of Composite Materials, 1994, 28, 1098.
36 Mathur R, Advani S G, Fink B K. Polymer Composites, 1999, 20, 167.
37 Jiang S, Zhang C, Wang B. Composites Part A: Applied Science and Manufacturing, 2002, 33, 471.
38 Luo J, Liang Z, Zhang C, et al. Composites Part A: Applied Science and Manufacturing, 2001, 32, 877.
39 Struzziero G, Skordos A A. Advanced Manufacturing: Polymer & Composites Science, 2019, 5, 17.
40 Okabe T, Oya Y, Yamamoto G, et al. Composites Part A: Applied Science and Manufacturing, 2017, 92, 1.
41 Oya Y, Matsumiya T, Ito A, et al. Journal of Composite Materials, 2020, 54, 2131.
42 Henz B J, Mohan R V, Shires D R. Composites Part A: Applied Science and Manufacturing, 2007, 38 1932.
43 Seyednourani M, Yildiz M, Sas H S. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106522.
44 Chai B X, Eisenbart B, Nikzad M, et al. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107352.
45 Hsiao K, Devillard M, Suresh G A. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 175.
46 Panda N, Majhi S K. Arabian Journal for Science and Engineering, 2020, 45, 2743.
47 Amaran S, Sahinidis N V, Sharda B, et al. Annals of Operations Research, 2016, 240, 351.
48 Kessels J F A, Jonker A S, Akkerman R. Composites Part A: Applied Science and Manufacturing, 2007, 38, 2076.
49 Stieber S, Heber L, Obertscheider C, et al. In: Conference Record of the 2023 International Conference on Machine Learning and Applications (ICMLA). Jacksonville, USA, 2023, pp. 17.
50 Chai B X, Eisenbart B, Nikzad M, et al. Materials, 2023, 16, 6115.
51 Golovatov D A, Tatarkanov A A, Shavaev A A, et al. In: Conference Record of the 2019 International Conference on IT&QM&IS. Sochi, Russia, 2019, pp. 486.
52 Matsuzaki R, Morikawa M, Oikawa Y. Composites Part C: Open Access, 2021, 5, 100158.
53 Tifkitsis K I, Skordos A A. Polymer Composites, 2020, 41, 5387.
54 Stieber S, Schroter N, Schiendorfer A, et al. In: Conference Record of ECML PKDD 2020. Ghent, Belgium, 2020. pp. 411.
55 Stieber S, Hoffman A, Schiendorfer A, et al. In: Conference Record of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Vienna, Austria, 2020, pp. 1455.
56 Mendikute J, Plazaola J, Baskaran M, et al. Composites Part B: Engineering, 2021, 221, 108973.
57 Machello C, Baghaei K A, Bazli M, et al. Composites Part B: Engineering, 2024, 270, 111132.
58 Wang J, Simacek P, Advani S G. Composites Part A: Applied Science and Manufacturing, 2016, 87, 243.
59 Sánchez F, Domenech L, García V, et al. Composites Part A: Applied Science and Manufacturing, 2015, 77, 285.
60 Wang J, Simacek P, Advani S G. Composites Part A: Applied Science and Manufacturing, 2017, 95, 161.
[1] 周甲佳, 王一锋, 赵军, 宋晨阳, 吕文朴. 石灰石煅烧黏土基ECC单轴拉伸性能及抗压强度[J]. 材料导报, 2026, 40(1): 24120246-8.
[2] 曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
[3] 贾婧, 庄伟彬, 李菁辉, 曹庆, 刘敬福. Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响[J]. 材料导报, 2026, 40(1): 24070164-7.
[4] 殷子洛, 朱泉峣, 李凯, 张成杰, 周彦鹏, 张雨晴. 聚丙烯纤维增强交联聚苯乙烯的介电及力学性能研究[J]. 材料导报, 2026, 40(1): 25010020-6.
[5] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[6] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[7] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[8] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[9] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[10] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[11] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[12] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[13] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[14] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[15] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[1] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[2] LI Hongfeng, QU Chunyan, WANG Dezhi, LIU Zhongliang, GU Jiyou, ZHANG Yang. Curing Kinetics and Fracture Toughness of BDM/DABPA System Modified by Short Glass Fiber Reinforced Polyether Ketone Ketones (PEKK-GF)[J]. Materials Reports, 2018, 32(6): 971 -976 .
[3] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[4] WANG Keqiang, YE Shenjie, WANG Wenjin, FU Jia, CHEN Zhongren. Effect of Asymmetric Block Copolymer PS-b-PMMA on the Compatibility of PCHMA/PMMA Blends by Different Blending Methods: Interface vs Micelles[J]. Materials Reports, 2017, 31(8): 98 -103 .
[5] ZHOU Shuangshuang, LIU Xiqin, LIU Zili, HOU Zhiguo, TIAN Qingchao. Effect of Normalizing Process on Microstructure Evolution and Tensile
Properties of Cold-rolled Low-alloy Cryogenic Steel
[J]. Materials Reports, 2017, 31(6): 98 -104 .
[6] ZHANG Haidong,WEI Jiangxiong, ZHAO Zhiguang, YU Qijun, LI Fangxian. Influence of Calcium Silicate Hydrate Seed on Compressive Strength of CaO-SiO2-H2O Autoclaved System and Its Mechanism Analysis[J]. Materials Reports, 2017, 31(14): 122 -126 .
[7] BAI Pengfei, MIN Xiaohua, TAO Xiaojie, ZHONG Gongcheng, BAI Shuyu, CHENG Congqian, ZHAO Jie. Effect of Microstructure on Necking of Medical U-shaped Nail of TC4 Titanium Alloy[J]. Materials Reports, 2017, 31(13): 146 -150 .
[8] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[9] SONG Xiaolan, LIU Hanjun, WANG Haibo, DUAN Hailong, ZHANG Ying, LIU Shichao, ZHOU Yongxin, ZHOU Zhihai. Effect of Pre-activation Time on Structure and Electrochemical Performance for Rice Husk-based Activated Carbon[J]. Materials Reports, 2017, 31(20): 25 -29 .
[10] ZHANG Xianlian, HE Xiaocong, ZHAO Lun, XING Baoying, CHENG Qiang. Mechanical Properties and Failure Mechanisms of Self-piercing Riveted Joints of Dissimilar Sheets for TA1 Titanium Alloy[J]. Materials Reports, 2017, 31(20): 92 -95 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed