Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24120246-8    https://doi.org/10.11896/cldb.24120246
  无机非金属及其复合材料 |
石灰石煅烧黏土基ECC单轴拉伸性能及抗压强度
周甲佳1, 王一锋1, 赵军2,*, 宋晨阳3, 吕文朴4
1 郑州大学力学与安全工程学院,郑州 450001
2 郑州大学土木工程学院,郑州 450001
3 河南天畅电力设计咨询有限公司,郑州 450199
4 河南华泰新材科技股份有限公司,河南 南阳 473001
Uniaxial Tensile Properties and Compressive Strength of Limestone Calcined Clay-based Engineered Cementitious Composites
ZHOU Jiajia1, WANG Yifeng1, ZHAO Jun2,*, SONG Chenyang3, LYU Wenpu4
1 School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
2 School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
3 Henan Tianchang Electric Power Design Consulting Co., Ltd., Zhengzhou 450199, China
4 Henan Huatai New Materials Technology Co., Ltd., Nanyang 473001, Henan, China
下载:  全 文 ( PDF ) ( 34295KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高韧性水泥基复合材料(ECC)作为一种新型建筑材料,因其优异的拉伸性能和耐久性在土木工程领域得到了广泛关注。本工作通过极差分析、贡献率分析和多因素交互作用分析探究正交试验中硅灰掺量、石灰石煅烧黏土(LCC)掺量和砂胶比对LCC-ECC单轴拉伸性能和抗压强度的影响。结果表明:所有试件均具有明显的应变硬化和多缝开裂特性。各因素对LCC-ECC初裂强度、抗拉强度、拉伸韧性和抗压强度影响的排序为LCC掺量>硅灰掺量>砂胶比。随着硅灰掺量和LCC掺量的增大,LCC-ECC抗拉强度、初裂强度逐渐减小;随着砂胶比的增大,LCC-ECC抗拉强度逐渐小幅上升,而初裂强度呈现出先减后增的趋势。LCC-ECC拉伸韧性和抗压强度随LCC掺量的增大而减小,拉伸韧性随硅灰掺量、砂胶比的增大先增后减,抗压强度随硅灰掺量、砂胶比的增大先减后增。当LCC掺量为50%,硅灰掺量为0~0.1,砂胶比为0.2~0.3时,LCC-ECC具有优异的拉伸性能。通过SEM分析纤维-基体界面损伤情况,发现纤维存在拔出和断裂的现象。随着LCC掺量的增加,纤维-基体界面粘结性能降低,更多的纤维被拔出而不是断裂。拔出的纤维表面附着大量水化产物,说明即使掺加大量LCC,纤维仍能起到良好的桥连作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周甲佳
王一锋
赵军
宋晨阳
吕文朴
关键词:  超高韧性水泥基复合材料  石灰石煅烧黏土  正交试验  微观结构  拉伸性能    
Abstract: As a new type of building material, Engineered cementitious composite(ECC) has been widely concerned in the field of civil engineering due to its excellent tensile properties and durability. In this work, the effects of silica fume content, limestone calcined clay(LCC) content and sand-binder ratio on the uniaxial tensile properties and compressive strength of LCC-ECC were obtained by range analysis, contribution rate analysis and multi-factor interaction analysis. The results show that all specimens have obvious strain hardening and multi-crack cracking characteristics. The effects of various factors on the first-cracking strength, tensile strength, tensile toughness and compressive strength of LCC-ECC are sorted from largest to smallest as : LCC content>silica fume content>sand-binder ratio. With the increase of silica fume content and LCC content, the tensile strength and initial cracking strength of LCC-ECC gradually decrease. With the increase of sand-binder ratio, the tensile strength of LCC-ECC increases slightly, while the first-cracking strength decreases first and then increases. The tensile toughness and compressive strength of LCC-ECC decrease with the increase of LCC content. The tensile toughness increases first and then decreases with the increase of silica fume content and sand-binder ratio, and the compressive strength decreases first and then increases with the increase of silica fume content and sand-binder ratio. When the LCC content is 50%, the silica fume content is 0—0.1, and the sand-binder ratio is 0.2—0.3, LCC-ECC has excellent tensile properties. The fiber-matrix interface damage was analyzed by SEM, and it was found that the fibers were pulled out and broken. With the increase of LCC content, the bonding performance of fiber-matrix interface decreases, and more fibers are pulled out rather than broken. A large number of hydration products are attached to the surface of the extracted fiber, indicating that the fiber can still play a good bridging role even if a large amount of LCC is added.
Key words:  engineered cementitious composite    limestone calcined clay    orthogonal test    microstructure    tensile property
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TU528.58  
基金资助: 国家自然科学基金 (52178257;51708510);河南省优秀青年基金(222300420082)
通讯作者:  * 赵军,郑州大学教授、博士研究生导师,目前在华北水利水电担任副校长一职。研究领域为高性能混凝土、纤维混凝土、纤维聚合物(FRP)筋混凝土结构、混凝土结构加固技术、工程结构防灾减灾等。zhaoj@zzu.edu.cn   
作者简介:  周甲佳,郑州大学副教授。研究方向为高性能土木工程材料及工程应用技术、新材料本构模型及组合结构、智能建造(3D打印混凝土)技术等。
引用本文:    
周甲佳, 王一锋, 赵军, 宋晨阳, 吕文朴. 石灰石煅烧黏土基ECC单轴拉伸性能及抗压强度[J]. 材料导报, 2026, 40(1): 24120246-8.
ZHOU Jiajia. Uniaxial Tensile Properties and Compressive Strength of Limestone Calcined Clay-based Engineered Cementitious Composites. Materials Reports, 2026, 40(1): 24120246-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120246  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24120246
1 Xu S L, Mu F J, Wang J Y, et al. Construction and Building Materials, 2019, 195, 638.
2 Zhu H, Hu W H, Mehthel M, et al. Cement and Concrete Composites, 2023, 139, 105051.
3 Li V C. Journal of the Chinese Ceramic Society, 2007, 35(4), 531(in Chinese)
Li V C. 硅酸盐学报, 2007, 35(4), 531.
4 Li V C, Stang H, Krenchel H. Materials and Structures, 1993, 26, 486.
5 Li V C, Leung C K Y. Journal of Engineering Mechanics, 1992, 118(11), 2246.
6 Zhu H, Zhang D, Wang Y C, et al. Cement and Concrete Composites, 2021, 118, 103936.
7 Xu S L, Xu H L, Huang B T, et al. Composites Communications, 2022, 29, 100992.
8 Liu H Z, Zhang Q, Li V, et al. Construction and Building Materials, 2017, 133, 171.
9 Şahmaran M, Li V C. Cement and Concrete Composites, 2008, 30(2), 72.
10 Şahmaran M, Li V C. Cement and Concrete Research, 2009, 39(11), 1033.
11 Zhu H, Zhang D, Wang T Y, et al. Construction and Building Materials, 2020, 259, 119805.
12 Zhu H, Wang T Y, Wang Y C, et al. Engineering Structures, 2023, 289, 116305.
13 Zhou Y W, Gong G Q, Xi B, et al. Composites Part B, Engineering, 2022, 243, 110183.
14 Gong G Q, Guo M H, Zhou Y W, et al. Polymers, 2022, 14(7), 1291.
15 Scrivener K, Martirena F, Bishnoi S, et al. Cement and Concrete Research, 2018, 114, 49.
16 Hou M J, Zhang D, Li V C. Construction and Building Materials, 2022, 348, 128692.
17 Zhang D, Jaworska B, Zhu H, et al. Cement and Concrete Composites, 2020, 114, 103766.
18 Zhu H, Yu K Q, Li V C. Cement and Concrete Composites, 2021, 115, 103868.
19 Hou M J, Zhang D, Li V C. Cement and Concrete Composites, 2022, 134, 104790.
20 Wang L, Rehman N U, Curosu I, et al. Cement and Concrete Research, 2021, 144, 106421.
21 Yu J, Wu H L, Leung C K Y. Journal of Cleaner Production, 2020, 262, 121343.
22 Liang L, Wang Q W, Shi Q X. Journal of Building Structures, 2024, 45(9), 41(in Chinese)
梁林, 王秋维, 史庆轩. 建筑结构学报, 2024, 45(9), 41.
23 Yates F. The Journal of Agricultural Science, 1933, 23(1), 108.
24 Zhou Y W, Guo W H, Zheng S Y, et al. Polymers, 2023, 15(12), 2701.
25 Wang L, Zhu Z, Ahmed A H, et al. Construction and Building Materials, 2023, 370, 130633.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
[3] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[4] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[5] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[6] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[7] 翟子权, 段鸿莺, 吕颖慧, 张西文, 赵鹏, 张云升. 北京故宫神厨屋面灰背和夹垄灰浆成分及微结构对比分析[J]. 材料导报, 2025, 39(24): 24090214-10.
[8] 马硕, 蒋义, 高小建. C-S-H晶种对蒸汽养护水泥基材料强度的影响规律与作用机理[J]. 材料导报, 2025, 39(24): 24120059-7.
[9] 邵杰, 陈筝, 刘舒介, 罗淑见. 水热处理废弃咖啡渣对混凝土性能的影响及其机理研究[J]. 材料导报, 2025, 39(24): 24110107-7.
[10] 董照帅, 李新梅, 贾黎明, 贾海洋, 闫芷琪, 巫理平. 激光熔覆制备BCC/FCC梯度涂层及其磨损和拉伸性能的研究[J]. 材料导报, 2025, 39(24): 24120023-7.
[11] 杨佳奇, 李海军, 李皓云, 廉杰, 王小维, 宋祎鹏, 张瑞娟, 杨帆, 杨吉军. 辐照对AlxCrMoNbZr高熵合金涂层微观结构和力学性能的影响研究[J]. 材料导报, 2025, 39(24): 24120102-8.
[12] 龙海洋, 王涛, 曹俊, 李艳辉, 马汝成, 李晓硕, 王博超, 刘志存, 方姣. LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响[J]. 材料导报, 2025, 39(23): 24110207-9.
[13] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[14] 刘蕾, 姚勇, 张玲玲, 唐子歆, 仇为波. 风化软岩弃渣在道路基层的应用研究[J]. 材料导报, 2025, 39(22): 25020177-9.
[15] 乔立捷, 袁帅, 孟一凡, 邱质彬, 薛召露, 张振亚. 热障涂层的高温氧化及水氧腐蚀行为研究[J]. 材料导报, 2025, 39(22): 24100107-6.
[1] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] WANG Keqiang, YE Shenjie, WANG Wenjin, FU Jia, CHEN Zhongren. Effect of Asymmetric Block Copolymer PS-b-PMMA on the Compatibility of PCHMA/PMMA Blends by Different Blending Methods: Interface vs Micelles[J]. Materials Reports, 2017, 31(8): 98 -103 .
[4] BAI Pengfei, MIN Xiaohua, TAO Xiaojie, ZHONG Gongcheng, BAI Shuyu, CHENG Congqian, ZHAO Jie. Effect of Microstructure on Necking of Medical U-shaped Nail of TC4 Titanium Alloy[J]. Materials Reports, 2017, 31(13): 146 -150 .
[5] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[6] ZHANG Haidong,WEI Jiangxiong, ZHAO Zhiguang, YU Qijun, LI Fangxian. Influence of Calcium Silicate Hydrate Seed on Compressive Strength of CaO-SiO2-H2O Autoclaved System and Its Mechanism Analysis[J]. Materials Reports, 2017, 31(14): 122 -126 .
[7] ZHOU Shuangshuang, LIU Xiqin, LIU Zili, HOU Zhiguo, TIAN Qingchao. Effect of Normalizing Process on Microstructure Evolution and Tensile
Properties of Cold-rolled Low-alloy Cryogenic Steel
[J]. Materials Reports, 2017, 31(6): 98 -104 .
[8] CHEN Zipeng, SHI Shaoqing, LUO Weiming, SUN Jianhu, FAN Lanxin. Research on Finite Element Simulation of the High-density Polyethylene Under Large Deformation[J]. Materials Reports, 2017, 31(20): 135 -139 .
[9] XIAO Xuefeng, XU Jiayue, XIANG Weidong. Research Development of Lu-based Scintillation Crystals[J]. Materials Reports, 2017, 31(17): 12 -19 .
[10] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed