Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25010020-6    https://doi.org/10.11896/cldb.25010020
  高分子与聚合物基复合材料 |
聚丙烯纤维增强交联聚苯乙烯的介电及力学性能研究
殷子洛1, 朱泉峣1,*, 李凯2, 张成杰2, 周彦鹏2, 张雨晴2
1 武汉理工大学材料科学与工程学院,武汉 430070
2 深圳科瑞沃科技有限公司,广东 深圳 518117
Dielectric and Mechanical Properties of Polypropylene Fiber-reinforced Cross-linked Polystyrene
YIN Ziluo1, ZHU Quanyao1,*, LI Kai2, ZHANG Chengjie2, ZHOU Yanpeng2, ZHANG Yuqing2
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 Shenzhen Keruiwo Technology Co., Ltd., Shenzhen 518117, Guangdong, China
下载:  全 文 ( PDF ) ( 8839KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 交联聚苯乙烯具有极低的介电常数和介电损耗,是高频通信领域的首选应用材料。随着通信设备尺寸的增加,交联聚苯乙烯的力学性能不能满足大尺寸工件的要求。本工作采用浇注法,将聚丙烯纤维与交联聚苯乙烯复合,制备出纤维增强复合材料。使用谐振腔、万能试验机及扫描电子显微镜,对不同纤维含量及纤维长度下复合材料的介电性能、力学性能、断面形貌进行研究。在5.0 GHz时,复合材料的介电常数从2.52(交联聚苯乙烯介电常数)降低到2.45,介电损耗值为0.001。复合材料弯曲强度比纯交联聚苯乙烯最大提高36.2%,拉伸强度最大提高67.7%,复合材料的储能模量最高达到1 756 MPa,比原始值提高了46.3%。聚丙烯纤维的加入有效提高了交联聚苯乙烯的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷子洛
朱泉峣
李凯
张成杰
周彦鹏
张雨晴
关键词:  低介电损耗  交联聚苯乙烯  复合材料  力学性能    
Abstract: Cross-linked polystyrene has an extremely low dielectric constant and dielectric loss, and is regarded as the preferred application material in the field ofhigh-frequency communication. With the increase in the size of communication equipment, the mechanical properties of cross-linked polystyrene cannot meet the requirements of large-sized workpieces. In this study, fiber-reinforced composite were fabricated via the pouring method, integrating polypropylene fibers with cross-linked polystyrene. The dielectric properties, mechanical performance, and fracture morphology of the composites were comprehensively examined under different fiber contents and lengths. A resonator, a universal testing machine, and scanning electron microscopy were employed for these investigations. At 5.0 GHz, the dielectric constant of the composites dropped from 2.52 (the dielectric constant of cross-linked polystyrene) to 2.45, with a dielectric loss value of 0.001. Compared to pure cross-linked polystyrene, the composite material exhibited remarkable improvements: a 36.2% increase in flexural strength, a 67.7% boost in tensile strength, and a storage modulus reaching 1 756 MPa (46.3% higher than that of the original cross-linked polystyrene). Evidently, the addition of polypropylene fibers significantly enhances the mechanical properties of cross-linked polystyrene.
Key words:  low dielectric loss    cross-linked polystyrene    composite    mechanical property
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51472189);中国工程物理研究院脉冲功率科学与技术重点实验室基金(PPLF2013PZ07)
通讯作者:  * 朱泉峣,博士,武汉理工大学材料科学与工程学院教授、博士研究生导师。目前主要从事有机/无机纳米复合、高绝缘低介电损耗高聚物材料和二次电极材料等方面的研究。cglamri@whut.edu.cn   
作者简介:  殷子洛,武汉理工大学材料科学与工程学院硕士研究生,在朱泉峣教授的指导下开展复合材料领域研究。
引用本文:    
殷子洛, 朱泉峣, 李凯, 张成杰, 周彦鹏, 张雨晴. 聚丙烯纤维增强交联聚苯乙烯的介电及力学性能研究[J]. 材料导报, 2026, 40(1): 25010020-6.
YIN Ziluo. Dielectric and Mechanical Properties of Polypropylene Fiber-reinforced Cross-linked Polystyrene. Materials Reports, 2026, 40(1): 25010020-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010020  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25010020
1 Li X T, Zhu X M, Dong J, et al. Chinese Journal of Polymer Science, 2021, 39(9), 1200.
2 Tang L, Tang Y, Zhang J, et al. Science Bulletin, 2022, 67(21), 2196.
3 Fan Y G, Li Y H, Ma J B. Chemical Journal of Chinese Universities-Chinese, 2002, 23(8), 1622.
4 Xu F, Wei W, Zhang C, et al. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(2), 697.
5 Huang H, Zhang B, Zhao Z. Chemical Journal of Chinese Universities-Chinese, 2017, 38(9), 1687(in Chinese).
黄海鸿, 张保玉, 赵志培. 高等学校化学学报, 2017, 38(9), 1687.
6 Sha D, Yu X, Zhao J, et al. Chemical Journal of Chinese Universities-Chinese, 2020, 41(4), 838(in Chinese).
沙迪, 禹旭敏, 赵将, 等. 高等学校化学学报, 2020, 41(4), 838.
7 Wu Fei. Preparation and properties of cross-linked polystyrene and its glass fiber reinforced composites. Master's Thesis, Wuhan University of Technology, China, 2010 (in Chinese).
吴飞. 交联聚苯乙烯及其玻纤增强复合材料的制备及性能研究. 硕士学位论文, 武汉理工大学, 2010.
8 Li R, Pei J, Li X, et al. Ferroelectrics, 2019, 540(1), 162.
9 Zhang X, Wang Y, Cheng S. Polymer Bulletin, 2013, 70(3), 821.
10 Devaux E, Caza C, Recher G, et al. Polymer Testing, 2002, 21(4), 457.
11 Cerovic D D, Petronijevic I, Dojcilovic J R. Polymers for Advanced Technologies, 2014, 25(3), 338.
12 Prabhu T N, Hemalatha Y J, Harish V, et al. Journal of Applied Polymer Science, 2007, 104(1), 500.
13 Fang Ke, Fu Wanli, Lin Ting. Jiangxi Chemical Industry, 2022, 38(2), 75 (in Chinese).
方轲, 傅万里, 林婷. 江西化工, 2022, 38(2), 75.
14 Benzerga R, Badard M, Mejean C, et al. Journal of Electronic Materials, 2020, 49(5), 2999.
15 Latif S S, Nahar S, Hasan M. Journal of Reinforced Plastics and Compo-sites, 2015, 34(3), 187.
16 Yang J, Xie H F, Song X, et al. Shanghai Journal of Stomatology, 2016, 25(1), 1.
17 Joseph P V, Mathew G, Joseph K, et al. Composites Part A:Applied Science and Manufacturing, 2003, 34(3), 275.
18 Ku H, Wang H, Pattarachaiyakoop N, et al. Composites Part B:Engineering, 2011, 42(4), 856.
19 Rezaei F, Yunus R, Ibrahim N A. Materials & Design, 2009, 30(2), 260.
20 Venkateshwaran N, Elayaperumal L A, Jagatheeshwaran M S. Journal of Reinforced Plastics and Composites, 2011, 30(19), 1621.
21 Ashok R B, Srinivasa C V, Basavaraju B. Advanced Composites and Hybrid Materials, 2019, 2(4), 586.
22 Zhang D, He M, Qin S, et al. RSC Advances, 2017, 7(25), 15439.
[1] 周甲佳, 王一锋, 赵军, 宋晨阳, 吕文朴. 石灰石煅烧黏土基ECC单轴拉伸性能及抗压强度[J]. 材料导报, 2026, 40(1): 24120246-8.
[2] 谢树磊, 欧美琼, 侯坤磊, 王旻, 马颖澈. Mo、W对多晶铸造镍基高温合金组织及应用性能影响的研究进展[J]. 材料导报, 2026, 40(1): 24110085-11.
[3] 曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
[4] 贾婧, 庄伟彬, 李菁辉, 曹庆, 刘敬福. Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响[J]. 材料导报, 2026, 40(1): 24070164-7.
[5] 姜劲驰, 李文晓, 方可言. 人工智能方法在RTM工艺仿真中的应用[J]. 材料导报, 2026, 40(1): 24120233-8.
[6] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[7] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[8] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[9] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[10] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[11] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[12] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[13] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[14] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[15] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[1] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[2] LI Hongfeng, QU Chunyan, WANG Dezhi, LIU Zhongliang, GU Jiyou, ZHANG Yang. Curing Kinetics and Fracture Toughness of BDM/DABPA System Modified by Short Glass Fiber Reinforced Polyether Ketone Ketones (PEKK-GF)[J]. Materials Reports, 2018, 32(6): 971 -976 .
[3] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[4] WANG Keqiang, YE Shenjie, WANG Wenjin, FU Jia, CHEN Zhongren. Effect of Asymmetric Block Copolymer PS-b-PMMA on the Compatibility of PCHMA/PMMA Blends by Different Blending Methods: Interface vs Micelles[J]. Materials Reports, 2017, 31(8): 98 -103 .
[5] ZHOU Shuangshuang, LIU Xiqin, LIU Zili, HOU Zhiguo, TIAN Qingchao. Effect of Normalizing Process on Microstructure Evolution and Tensile
Properties of Cold-rolled Low-alloy Cryogenic Steel
[J]. Materials Reports, 2017, 31(6): 98 -104 .
[6] ZHANG Haidong,WEI Jiangxiong, ZHAO Zhiguang, YU Qijun, LI Fangxian. Influence of Calcium Silicate Hydrate Seed on Compressive Strength of CaO-SiO2-H2O Autoclaved System and Its Mechanism Analysis[J]. Materials Reports, 2017, 31(14): 122 -126 .
[7] BAI Pengfei, MIN Xiaohua, TAO Xiaojie, ZHONG Gongcheng, BAI Shuyu, CHENG Congqian, ZHAO Jie. Effect of Microstructure on Necking of Medical U-shaped Nail of TC4 Titanium Alloy[J]. Materials Reports, 2017, 31(13): 146 -150 .
[8] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[9] SONG Xiaolan, LIU Hanjun, WANG Haibo, DUAN Hailong, ZHANG Ying, LIU Shichao, ZHOU Yongxin, ZHOU Zhihai. Effect of Pre-activation Time on Structure and Electrochemical Performance for Rice Husk-based Activated Carbon[J]. Materials Reports, 2017, 31(20): 25 -29 .
[10] ZHANG Xianlian, HE Xiaocong, ZHAO Lun, XING Baoying, CHENG Qiang. Mechanical Properties and Failure Mechanisms of Self-piercing Riveted Joints of Dissimilar Sheets for TA1 Titanium Alloy[J]. Materials Reports, 2017, 31(20): 92 -95 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed