Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24120198-12    https://doi.org/10.11896/cldb.24120198
  无机非金属及其复合材料 |
等离子体在金属离子电池正极材料制备与改性中的应用
吴越1,2,3, 张达1,2,3,*, 东鹏1,2,3, 梁风1,2,3,*
1 昆明理工大学真空冶金国家工程研究中心,昆明 650093
2 昆明理工大学云南省有色金属真空冶金重点实验室,昆明 650093
3 昆明理工大学冶金与能源工程学院,昆明 650093
Applications of Plasma in Preparation and Modification of Cathode Materials for Metal-ion Batteries
WU Yue1,2,3, ZHANG Da1,2,3,*, DONG Peng1,2,3, LIANG Feng1,2,3,*
1 National Engineering Research Center for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
2 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
3 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 35830KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 正极材料是决定金属离子电池能量密度和循环寿命的关键,探索新型的正极材料制备与改性技术对金属离子电池的应用和发展具有重要意义。等离子体中的高活性电子、离子、分子、自由基等粒子可促使材料快速发生多种物理或化学反应,在高性能正极材料制备与改性中的应用受到广泛关注。本文总结了近年来等离子体技术在金属离子电池正极材料制备与改性中应用的最新进展。首先,概述了介质阻挡放电、射频放电和辉光放电等多种等离子体放电方式的基本原理;其次,介绍了等离子体在制备与改性正极材料方面的应用及作用机制;最后,讨论了等离子体技术在正极材料制备与改性中应用面临的机遇、挑战以及未来研究方向。本文可为等离子体在材料科学领域的应用提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴越
张达
东鹏
梁风
关键词:  等离子体  金属离子电池  正极材料制备  正极材料改性    
Abstract: The cathode materials play a pivotal role in determining the energy density and cycle lifespan of metal-ion batteries. Exploring innovative techniques for their preparation and modification is crucial for the application and development of metal-ion batteries. Highly active electrons, ions, molecules, free radicals, and other particles excited by plasma can make the materials undergo a range of physical or chemical reactions rapidly, so the applications of plasma technology in the preparation and modification of high-performance cathode materials have garnered widespread attention. This paper reviews recent advancements in the applications of plasma technology to the preparation and modification of cathode materials for metal-ion batteries. Initially, the basic principles of various plasma discharge modes, such as dielectric barrier discharge, radio frequency discharge, and glow discharge, are summarized. Subsequently, the applications and mechanism of plasma in the preparation and modification of cathode materials are introduced. Finally, the opportunities, challenges, and future research directions for the applications of plasma technology in the preparation and modification of cathode materials are discussed.
Key words:  plasma    metal-ion battery    preparation of cathode material    modification of cathode material
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TQ153.2  
基金资助: 国家自然科学基金(12205127;12175089);云南省科技厅基础研究计划(202401AV070008;202301AS070051;202401AT070329;202301BE070001-052;202301AU070064);云南省“兴滇英才支持计划”(KKXY202252001;KKXX202452067)
通讯作者:  * 张达,博士,昆明理工大学讲师,主要从事等离子体治金、材liangfeng@kust.edu.cn料制备与改性等方面的研究。zhangda@kust.edu.cn
梁风,博士,昆明理工大学教授、博士研究生导师,日本九州大学客座教授。主要从事等离子体冶金及等离子体制备改性功能材料等方面的研究。liangfeng@kust.edu.cn   
作者简介:  吴越,昆明理工大学冶金与能源工程学院硕士研究生,在梁风教授的指导下研究等离子体改性材料在电池中的应用。
引用本文:    
吴越, 张达, 东鹏, 梁风. 等离子体在金属离子电池正极材料制备与改性中的应用[J]. 材料导报, 2026, 40(1): 24120198-12.
WU Yue. Applications of Plasma in Preparation and Modification of Cathode Materials for Metal-ion Batteries. Materials Reports, 2026, 40(1): 24120198-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120198  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24120198
1 Aramendia E, Brockway P E, Taylor P G, et al. Nature Energy, 2024, 9(7), 1.
2 Jia S P, Kumakura S, McCalla E. Energy & Environmental Science, 2024, 17(13), 4343.
3 Xu Y F, Du Y C, Chen H, et al. Chemical Society Reviews, 2024, 53(13), 7202.
4 Jin S, Gao X S, Hong S F, et al. Joule, 2024, 8(3), 746.
5 Wang W Y, Zhu H, Gao Z P, et al. Modern Chemical Industry, 2020, 40(10), 80 (in Chinese).
汪惟源, 朱寰, 高正平, 等. 现代化工, 2020, 40(10), 80.
6 Dou S, Tao L, Wang R L, et al. Advanced Materials, 2018, 30(21), 1705850.
7 Bogaerts A, Neyts E C. ACS Energy Letters, 2018, 3(4), 1013.
8 Li J, Jing X C, Li Q Q, et al. Chemical Society Reviews, 2020, 49(11), 3565.
9 Wang DD, Zou Y Q, Tao L, et al. Chinese Chemical Letters, 2019, 30(4), 826.
10 Ouyang B, Zhang Y, Xia X, et al. Materials Today Nano, 2018, 3, 28.
11 Liang H F, Ming F W, Alshareef H N. Advanced Energy Materials, 2018, 8(29), 1801804.
12 Zhang Y Q, Rawat R S, Fan H J. Small Methods, 2017, 1(9), 1700164.
13 Joseph J, Murdock A T, Seo D H, et al. Advanced Materials Technologies, 2018, 3(9), 1700164.
14 Li C, Zhang T F, Qiu Z, et al. Carbon Energy, 2024, 7(2), e641.
15 Xie Z P, Tang Z G, Zhang D, et al. International Journal of Refractory Metals and Hard Materials, 2022, 105, 105815.
16 Duan S X, Liu X, Wang Y N, et al. Plasma Processes and Polymers, 2017, 14(9), 1600218.
17 Gao T, Deng X J, Xue Q G, et al. JOM, 2024, 77, 1475.
18 Zhang Y, Mei H X, Cao Y, et al. Coordination Chemistry Reviews, 2021, 438, 213910.
19 Su F M, Zhang D, Liang F. Chinese Journal of Applied Chemistry, 2019, 36(8), 882 (in Chinese).
苏风梅, 张达, 梁风. 应用化学, 2019, 36(8), 882.
20 Hou D Y, Bai F N, Dong P, et al. Journal of Power Sources, 2023, 584, 233599.
21 Zhang Y, Zhou C G, Yang J, et al. Journal of Power Sources, 2022, 520, 230800.
22 Morrish R, Haak T, Wolden C A. Chemistry of Materials, 2014, 26(13), 3986.
23 Liang H F, Gandi A N, Anjum D H, et al. Nano Letters, 2016, 16(12), 7718.
24 Musil J, Baroch P. IEEE Transactions on Plasma Science, 2005, 33(2), 338.
25 Petitpas G, Rollier J D, Darmon A, et al. International Journal of Hydrogen Energy, 2007, 32(14), 2848.
26 Zhang Y, Xue S C, Yan X H, et al. Electrochimica Acta, 2023, 442, 141822.
27 Temmerman E, Akishev Y, Trushkin N, et al. Journal of Physics D: Applied Physics, 2005, 38(4), 505.
28 Clapa M, Gaj J. Sensors and Actuators A: Physical, 2021, 332, 113069.
29 de Cádiz M C, Arrabal A L, Lantada A D, et al. Scientific Reports, 2021, 11(1), 24175.
30 Song K G, Wang H, Jiao Z, et al. Journal of Hazardous Materials, 2022, 422, 126906.
31 Liu Y C, Xie Z P, Lu S Q, et al. Dalton Transactions, 2024, 53(27), 11454.
32 Yao J X, Miao J S, Li J X, et al. Applied Physics Letters, 2023, 122(8), 082905.
33 Gibalov V I, Pietsch G J. Journal of Physics D: Applied Physics, 2000, 33(20), 2618.
34 Cao S L, Ning J, He X, et al. Small, 2024, 20(31), 2311204.
35 Felten A, Bittencourt C, Pireaux J J, et al. Journal of Applied Physics, 2005, 98(7), 074308.
36 Wang B W, Xu L J, Cheng Y, et al. Journal of the Energy Institute, 2024, 114, 101629.
37 Wang B W, Xu L J, Cheng Y, et al. Journal of the Energy Institute, 2024, 114, 101629.
38 Mariotti D, Patel J, Svrcek V, et al. Plasma Processes and Polymers, 2012, 9(11-12), 1074.
39 Wang B W, Xu L J, Cheng Y, et al. Journal of the Energy Institute, 2024, 114, 101629.
40 Li Q C, Fu X W, Li H D, et al. Advanced Functional Materials, 2024, 34(48), 2408517.
41 Sun Y, Zang Y P, Tian W Z, et al. Energy and Environmental Science, 2022, 15(3), 1201.
42 Donnelly V M, Kornblit A. Journal of Vacuum Science & Technology A, 2013, 31(5), 050825.
43 Ye K, Liang F, Yao Y C, et al. Materials Reports, 2019, 33(7), 1089 (in Chinese).
叶凯, 梁风, 姚耀春, 等. 材料导报, 2019, 33(7), 1089.
44 Li Y, Chen M H, Liu B, et al. Advanced Energy Materials, 2020, 10(27), 2000927.
45 Akada K, Obata S, Saiki K. Carbon, 2022, 189, 571.
46 Zhang D, Dai Y N, Liang F. Materials Reports, 2017, 31(9), 64 (in Chinese).
张达, 戴永年, 梁风. 材料导报, 2017, 31(9), 64.
47 Wang X W, Sun G Z, Routh P, et al. Chemical Society Reviews, 2014, 43(20), 7067.
48 Banerjee S, Adhikari E, Sapkota P, et al. Materials, 2020, 13(13), 2931.
49 Wu Z X, Zhao Y, Jin W, et al. Advanced Functional Materials, 2021, 31(9), 2009070.
50 Tinoco J C, Estrada M, Baez H, et al. Thin Solid Films, 2006, 496(2), 546.
51 Zhang D, Mylsamy G, Yang X X, et al. Ceramics International, 2021, 47(12), 16972.
52 Yao Z Y, Kang Y, Hou M J, et al. Advanced Functional Materials, 2022, 32(16), 2111919.
53 Kimbulapitiya K M M D K, Rehman B, Wani S S, et al. Nano Energy, 2024, 122, 109235.
54 Shi Y M, Zhang B. Chemical Society Reviews, 2016, 45(6), 1529.
55 Srinivasan R, Demirev P A, Carkhuff B G, et al. Journal of the Electrochemical Society, 2020, 167(14), 140516.
56 Wood K N, Noked M, Dasgupta N P. ACS Energy Letters, 2017, 2(3), 664.
57 Kim W, Park S, Ko G, et al. Journal of Physics and Chemistry of Solids, 2022, 170, 110925.
58 Zhang Y, Zhang YY, Li C E, et al. Coordination Chemistry Reviews, 2024, 519, 216103.
59 Jiang Q Q, Xu L, Huo J, et al. RSC Advances, 2015, 5(92), 75145.
60 Jiang Q Q, Zhang H, Wang S Y. Green Chemistry, 2016, 18(3), 662.
61 Ajayi B P, Thapa A K, Cvelbar U, et al. Chemical Engineering Science, 2017, 174, 302.
62 Vendra V K, Nguyen T Q, Thapa A K, et al. RSC Advances, 2015, 5(46), 36906.
63 Yang Y H, Wang J Z, Wang C, et al. Green Chemistry, 2020, 22(21), 7460.
64 Liang Z M, Li T Y, Chi H, et al. Energy & Environmental Materials, 2024, 7(1), 28.
65 Zhu S G, Qin Y, Zhang J. International Journal of Electrochemical Science, 2016, 11(7), 6403.
66 Meng F B, Hu R Z, Chen Z W, et al. Journal of Energy Chemistry, 2021, 56, 46.
67 Hou D Y, Chen J, Bai F N, et al. Journal of Power Sources, 2024, 613, 234845.
68 Han W Z, Lai Q S, Gao X W, et al. Energy Storage Science and Technology, 2023, 12(5), 1364(in Chinese).
韩文哲, 赖青松, 高宣雯, 等. 储能科学与技术, 2023, 12(5), 1364.
69 Cai Y Q, Zeng X, Pang D W, et al. Materialia, 2023, 27, 101674.
70 Wei Y F, Xia H C, Zhang J N. Materials Reports, 2024, 38(8), 39 (in Chinese).
魏一帆, 夏会聪, 张佳楠. 材料导报, 2024, 38(8), 39.
71 Liu Z G, Hu Y Y, Dunstan M T, et al. Chemistry of Materials, 2014, 26(8), 2513.
72 Song W X, Liu S Q. Solid State Sciences, 2013, 15, 1.
73 Shakoor R A, Seo D H, Kim H, et al. Journal of Materials Chemistry, 2012, 22(38), 20535.
74 Moossa B, Abraham J J, Ahmed A M, et al. Materials Research Bulletin, 2025, 182, 113173.
75 Nadeina A, Rozier P, Seznec V. Energy Technology, 2020, 8(5), 1901304.
76 Jiang W W, Xu X L, Liu Y X, et al. Journal of Alloys and Compounds, 2020, 827, 154273.
77 Jiang Q Q, Chen N, Liu D D, et al. Nanoscale, 2016, 8(21), 11234.
78 Zhang Y L, Yuan Z X, Zhang H, et al. Acta Chimica Sinica, 2023, 81(12), 1724 (in Chinese).
张雅岚, 苑志祥, 张浩, 等. 化学学报, 2023, 81(12), 1724.
79 Wang Y M, Liu K, Wang B G. Chemical Journal Chinese Universities, 2021, 42(5), 1514 (in Chinese).
王弈艨, 刘凯, 王保国. 高等学校化学学报, 2021, 42(5), 1514.
80 Hemmelmann H, Dinter J K, Elm M T. Advanced Materials Interfaces, 2021, 8(9), 2002074.
81 Ren X G, Li Y J, Xi X M, et al. Journal of Power Sources, 2021, 499, 229756.
82 Julien C M, Mauger A. Energies, 2020, 13(23), 6363.
83 Zha G J, Luo Y P, Hu N G, et al. ACS Applied Materials & Interfaces, 2020, 12(32), 36046.
84 Fu J, Xie W N, Zhi M Y. Materials Reports, 2023, 37(S1), 23040181(in Chinese).
付举, 谢雯娜, 智茂永. 材料导报, 2023, 37(S1), 23040181.
85 Becker D, Börner M, Nölle R, et al. ACS Applied Materials & Interfaces, 2019, 11(20), 18404.
86 Liang L W, Zhang W H, Zhao F, et al. Advanced Materials Interfaces, 2020, 7(3), 1901749.
87 Liu Y, Liu W B, Zhu M Y, et al. Journal of Alloys and Compounds, 2021, 888, 161594.
88 Liu X H, Kou L Q, Shi T, et al. Journal of Power Sources, 2014, 267, 874.
89 Muruganantham R, Tseng T H, Lee M L, et al. Chemical Engineering Journal, 2023, 464, 142686.
90 Chang W, Choi J W, Im J C, et al. Journal of Power Sources, 2010, 195(1), 320.
91 Hata J I, Hirayama M, Suzuki K, et al. Batteries & Supercaps, 2019, 2(5), 454.
92 Goodenough J B. Nature Electronics, 2018, 1(3), 204.
93 Zhang Y, Jing X, Yan X H, et al. Coordination Chemistry Reviews, 2024, 499, 215494.
94 Xie H L, Zhao Q Y, Zhang T A, et al. Materials Reports, 2022, 36(S1), 324 (in Chinese).
谢焕玲, 赵秋月, 张廷安, 等. 材料导报, 2022, 36(S1), 324.
95 Xia Y, Zheng J M, Wang C M, et al. Nano Energy, 2018, 49, 434.
96 Xu X, Huo H, Jian J Y, et al. Advanced Energy Materials, 2019, 9(15), 1803963.
97 Yuan K, Li N, Ning R Q, et al. Nano Energy, 2020, 78, 105239.
98 Qiu Y H, Wei X B, Liu N, et al. Electrochimica Acta, 2022, 428, 140973.
99 Chen Z W, Liu Y X, Lu Z C, et al. Journal of Alloys and Compounds, 2019, 803, 71.
100 Yi G D, Fan CL, Hu Z, et al. Electrochimica Acta, 2021, 383, 138370.
101 Fu Y Q, Wei Q L, Zhang G X, et al. Advanced Energy Materials, 2018, 8(26), 1801445.
102 Cao P F, Liu Y T, Chen N, et al. Materials Reports, 2022, 36(23), 31 (in Chinese).
曹鹏飞, 刘雅婷, 陈妮, 等. 材料导报, 2022, 36(23), 31.
103 Alfaruqi M H, Islam S, Gim J, et al. Chemical Physics Letters, 2016, 650, 64.
104 Pan H L, Shao YY, Yan P F, et al. Nature Energy, 2016, 1(5), 1.
105 Huang YY, Wang Y Q, Tang C, et al. Advanced Materials, 2019, 31(13), 1803800.
106 Lin M X, Shao F Q, Weng S T, et al. Electrochimica Acta, 2021, 378, 138147.
107 Lin M X, Shao F Q, Tang Y, et al. Journal of Colloid and Interface Science, 2022, 611, 662.
108 Teng C L, Zhang C Q, Yin K S, et al. Science China-Materials, 2022, 65(4), 920.
109 Cai P, Wang K L, He X, et al. Energy Storage Materials, 2023, 60, 102835.
110 Chiu K F. Thin Solid Films, 2007, 515(11), 4614.
111 Takeuchi T, Tabuchi M, Ado K, et al. Journal of Power Sources, 2007, 174(2), 1063.
112 Wu J Y, Shao YJ, Wang B B, et al. Plasma Processes and Polymers, 2016, 13(10), 1008.
113 Perego D, Heng J S T, Wang X H, et al. Electrochimica Acta, 2018, 283, 228.
114 Chen C L, Chiu K F, Chen Y R, et al. Journal of the Chinese Chemical Society, 2012, 59(10), 1258.
115 Nie B, Li M, Yao T, et al. Carbon, 2023, 206, 105.
116 Qian J, You Y, Fan Z, et al. Journal of Energy Storage, 2023, 63, 106988.
117 Xie M, Lin M, Feng C, et al. Journal of Colloid and Interface Science, 2023, 645, 400.
[1] 续丽辉, 朱兴忠, 徐娟, 阚彩侠. 金纳米星的合成与应用[J]. 材料导报, 2025, 39(6): 23090180-15.
[2] 李琼, 秦利军, 李丹, 胡逸云, 冯昊. 典型微纳制造技术在新型含能材料可控制备和表面改性中的应用研究进展[J]. 材料导报, 2025, 39(22): 24100046-13.
[3] 陈嘉乐, 张达, 解志鹏, 刘轶昌, 杨斌, 梁风. 电弧等离子体制备过渡金属氮化物及应用[J]. 材料导报, 2025, 39(21): 24100013-12.
[4] 盛兰兵, 梁伊茗, 李云月, 赵明远, 沈元勋, 钟素娟. 核聚变中面向等离子体材料与铜合金的钎焊研究进展[J]. 材料导报, 2025, 39(19): 24090024-8.
[5] 解光瑞, 杨盼盼, 孙吉, 杨阳, 丁红宇, 刘兴光, 张世宏. 30CrNi2MoVA钢等离子体渗氮层表征及其对宏观力学性能的影响[J]. 材料导报, 2025, 39(13): 24050145-8.
[6] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[7] 陆泉芳, 郝小霞, 冯妍, 马晓娟, 王波, 俞洁. 阴极辉光放电电解制备纳米ZnO[J]. 材料导报, 2024, 38(13): 22060298-7.
[8] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[9] 毛晓璇, 冯柳, 吴立清, 辛伍红, 牛金叶. 多孔炭基复合材料用作碱金属离子电池负极的研究进展[J]. 材料导报, 2023, 37(S1): 23020009-12.
[10] 闵军雄, 张敏男, 戴光泽, 赵君文. 层流等离子体淬火对GCr15轴承钢的滚动接触疲劳及损伤性能的影响[J]. 材料导报, 2023, 37(2): 21060076-7.
[11] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[12] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[13] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[14] 杜娟, 李芳, 宋海鹏, 魏子明, 李香云. 金属表面复合防腐膜的制备及机理研究进展[J]. 材料导报, 2022, 36(3): 20060287-8.
[15] 张达, 张传琪, 李少龙, 何燕. 等离子体技术应用于碳载体改性及铂基催化剂制备的研究进展[J]. 材料导报, 2022, 36(24): 21030319-9.
[1] SHEN Haiyang, WANG Zhengzhou. Surface Modification of Steel Slag and Its Application in Compounded Rubber[J]. Materials Reports, 2018, 32(6): 1000 -1003 .
[2] SHANG Yudong, CHEN Xiuhua, LI Shaoyuan, MA Wenhui, WANG Yuechun, XIANG Fuwei. Performance Limiting Factors and Efficiency Improvement Methods of Graphene/n-Si Schottky Junction Solar Cell[J]. Materials Reports, 2017, 31(3): 123 -129 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
[5] ZHENG Wei, SUN Zhengming, ZHANG Peigen, TIAN Wubian, WANG Ying, ZHANG Yamei. Research Progress on MXene, Two Dimensional Nano-materials[J]. Materials Reports, 2017, 31(9): 1 -14 .
[6] LIN Hao, HU Jiapeng, LIU Ruilai, RAO Ruiye. Synthesis and Properties of pH-responsive Cellulose-g-PAA Nanofiber Hydrogels[J]. Materials Reports, 2017, 31(18): 55 -58 .
[7] PENG Gaifei, NIU Xujing, CHENG Kai. Research on Fire Resistance of Ultra-high-performance Concrete:a Review[J]. Materials Reports, 2017, 31(23): 17 -23 .
[8] LI Wangchang, WANG Zhaojia, LI Jingxin, CHE Shenglei. A Review on Soft Magnetic Composites Applying to Magnetic Cores of High Speed Electric Motors[J]. Materials Reports, 2018, 32(7): 1139 -1144 .
[9] MA Bin, HUANG Qiqin, XIAO Weiwei, HUANG Xiaolin. Piezoresistive Property of Steel Slag-Metakaolin Based Conductive Geopolymer[J]. Materials Reports, 2024, 38(6): 22040039 -6 .
[10] SUN Huajian, GUO Delin, LI Ruqing, HOU Liangpeng, YANG Minghui, SUN Jinzhao, YIN Fengshi. Research Status of Modified MCrAlY Coatings[J]. Materials Reports, 2024, 38(7): 22120155 -10 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed