Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24100046-13    https://doi.org/10.11896/cldb.24100046
  无机非金属及其复合材料 |
典型微纳制造技术在新型含能材料可控制备和表面改性中的应用研究进展
李琼1, 秦利军1,2, 李丹1, 胡逸云1, 冯昊1,*
1 西安近代化学研究所含能材料全国重点实验室,西安 710065
2 西北工业大学化学与化工学院,西安 710072
Advances in the Application of Typical Micro-Nano Fabrication Technologies in the Controlled Preparation and Surface Modification of Novel Energetic Materials
LI Qiong1, QIN Lijun1,2, LI Dan1, HU Yiyun1, FENG Hao1,*
1 National Key Laboratory of Energetic Materials, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
2 School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
下载:  全 文 ( PDF ) ( 44431KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含能材料是武器装备发射、运载、毁伤和控制的主要能源,是实现国防安全战略的重要基石。为满足武器系统对高能、高效、高安全和能量输出精确可控新型含能材料的应用需求,亟需发展兼顾能量性能和安全性能的含能材料新技术,促进武器系统向信息化和智能化方向发展。微纳制造技术是当前各国争相发展的前沿制造技术,在泛半导体、新能源、新材料等领域已取得诸多重要应用。基于国内外相关研究,本文综述了以物理气相沉积技术、化学气相沉积技术、原子层沉积技术、等离子体技术为典型代表的先进微纳制造技术在新型含能材料领域的最新应用研究进展。首先介绍了各种先进微纳制造技术的原理和特点,分析了微纳制造技术在精确控制新型含能材料尺寸、形态、组成和结构方面的技术优势,重点阐述了微纳制造技术在新型含能材料可控制备和表面改性等方面的应用,最后提出了典型微纳制造技术在当前新型含能材料领域应用中面临的挑战以及未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李琼
秦利军
李丹
胡逸云
冯昊
关键词:  含能材料  微机电系统  物理气相沉积  化学气相沉积  原子层沉积  等离子体技术    
Abstract: Energetic materials are the primary energy source for the launch, propulsion, damage, and control of weapon systems, and they are crucial for achieving national defense security strategies. To meet the application demands of weapon systems for novel energetic materials characterized by high-energy, high-efficiency, high-safety, and precisely controllable energy output, developing new energetic material technologies that harmonize energy performance with safety becomes imperative. This advancement will promote the evolution of weapon systems towards informatization and intelligence. Micro-nano manufacturing technology, a frontier manufacturing technology that countries are keen to develop, has seen significant applications in fields such as semiconductors, new energy, and new materials. Based on relevant research both domestically and internationally, the article reviews the latest research progress in the application of advanced micro-nano manufacturing technologies, represented by physical vapor deposition, chemical vapor deposition, atomic layer deposition, and plasma technology, in the field of novel energetic materials. Initially, the principles and characteristics of various advanced micro-nano manufacturing technologies are introduced. The technical advantages in precisely controlling the size, morphology, composition, and structure of novel energetic materials are analyzed, and the applications in the controlled preparation and surface modification of novel energetic materials are focused on. Finally, the paper discusses the challenges faced by typical micro-nano manufacturing technologies in the current field of novel energetic materials and outlines future development directions.
Key words:  energetic materials    micro-electro-mechanical system    physical vapor deposition    chemical vapor deposition    atomic layer deposition    plasma technology
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TJ45  
  TJ55  
  TB43  
  O69  
基金资助: 国家自然科学基金(21975200;22005240)
通讯作者:  *冯昊,博士,西安近代化学研究所研究员、博士研究生导师。目前主要从事原子层沉积表面工程技术等方面的研究。fenghao98@hotmail.com   
作者简介:  李琼,西安近代化学研究所应用化学硕士研究生,主要研究方向为新型含能材料表面改性技术。
引用本文:    
李琼, 秦利军, 李丹, 胡逸云, 冯昊. 典型微纳制造技术在新型含能材料可控制备和表面改性中的应用研究进展[J]. 材料导报, 2025, 39(22): 24100046-13.
LI Qiong, QIN Lijun, LI Dan, HU Yiyun, FENG Hao. Advances in the Application of Typical Micro-Nano Fabrication Technologies in the Controlled Preparation and Surface Modification of Novel Energetic Materials. Materials Reports, 2025, 39(22): 24100046-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100046  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24100046
1 Kuang J J, Luo N N, Zhang J Y, et al. Laser & Optoelectronics Progress, 2022, 59(11), 136 (in Chinese).
匡珺洁, 罗宁宁, 张静雅, 等. 激光与光电子学进展, 2022, 59(11), 136.
2 Kwok K S, Zuo Y, Choi S J, et al. Nano Letters, 2023, 23(16), 7477.
3 Chen L, Xu J H, Luo X C, et al. Nanotechnology Reviews, 2023, 12(1), 0105.
4 Valentinčič J. Micromachines, 2022, 13(12), 2058.
5 Jiang Z D. In:The 9th Congress of the Shaanxi Mechanical Engineering Society. Xi’an, China, 2009, pp.13 (in Chinese).
蒋庄德. 陕西省机械工程学会第九次代表大会会议论文集. 西安, 2009, pp.13.
6 Qin L J, Gong T, Yan N, et al. Chinese Journal of Explosives & Propellants, 2019, 42(5), 425 (in Chinese).
秦利军, 龚婷, 闫宁, 等. 火炸药学报, 2019, 42(5), 425.
7 Qin L J, Gong T, Hao H X, et al. Chemical Journal of Chinese Universities, 2015, 36(3), 420 (in Chinese).
秦利军, 龚婷, 郝海霞, 等. 高等学校化学学报, 2015, 36(3), 420.
8 Qu C X, Li J L, Ding K W, et al. Molecules, 2024, 29(2), 504.
9 Liu X W, Hu Y, Chen B W, et al. Applied Surface Science, 2022, 577, 150643.
10 Ekmekcioglu M, Erdogan N, Astarlioglu A T, et al. Vacuum, 2021, 187, 110100.
11 Aslanidis E, Sarigiannidis S, Skotadis E, et al. Materials, 2024, 17(7), 1522.
12 Meysami A, Najafabadi R A, Yosefnejad T, et al. Surface Engineering and Applied Electrochemistry, 2024, 60(1), 58.
13 Khan S B, Irfan S, Zhang Z J. Journal of Materials Research and Technology, 2024, 31, 1616.
14 Mariya V, Fabio B, Walter G, et al. Materials, 2023, 16(14), 4919.
15 Wang Y P. Preparation and performance study of Al-based energy-containing films. Master's Thesis, North University of China, China, 2023 (in Chinese).
王云鹏. Al基含能薄膜制备及性能研究. 硕士学位论文, 中北大学, 2023.
16 Ji X G. High insensitive energetic ignition device based on Al/CuO thin film. Master's Thesis, North University of China, China, 2023 (in Chinese).
冀小刚. 基于Al/CuO薄膜的高钝感含能点火器件研究. 硕士学位论文, 中北大学, 2023.
17 Tai Y. Fabrication and properties of energetic semiconductor bridge based on Al/MoO3 multilayer films. Master's Thesis, Nanjing University of Science and Technology, China, 2019 (in Chinese).
太玉. 基于Al/MoO3多层薄膜的含能半导体桥制备及性能研究. 硕士学位论文, 南京理工大学, 2019.
18 Li M G, Du Z W, Liao H. Vacuum, 2013, 50(6), 23 (in Chinese).
李茂果, 杜自卫, 廖宏. 真空, 2013, 50(6), 23.
19 Blobaum J K, Reiss E M, Plitzko M J, et al. Journal of Applied Physics, 2003, 94(5), 2915.
20 Zhang K L, Rossi C, Rodriguez A A G, et al. Applied Physics Letters, 2007, 91(11), 113117.
21 Zhang K L, Rossi C, Alphonse P, et al. Applied Physics A:Materials Science & Processing, 2009, 94(4), 957.
22 Petrantoni M, Rossi C, ConéDéra V, et al. Journal of Physics and Che-mistry of Solids, 2009, 71(2), 80.
23 Ohkura Y, Liu S Y, Rao P M, et al. Proceedings of the Combustion Institute, 2010, 33(2), 1909.
24 Sun X, Zhang F, Wang Y L, et al. Initiators & Pyrotechnics, 2014(1), 12 (in Chinese).
孙星, 张方, 王燕兰, 等. 火工品, 2014(1), 12.
25 Hoss J D, Knepper R, Hotchkiss J P, et al. Journal of Colloid and Interface Science, 2016, 473, 28.
26 O’grady C, Knepper R, Marquez M, et al. Propellants, Explosives, Pyrotechnics, 2019, 44(5), 572.
27 Olles D J, Wixom R R, Knepper R, et al. Applied Physics Letters, 2019, 114(21), 214102.
28 Peguero J C, Forrest E C, Knepper R, et al. Propellants, Explosives, Pyrotechnics, 2021, 46(1), 39.
29 Forrest E C, Knepper P, Brumbach M T, et al. ACS Applied Materials & Interfaces, 2021, 13(1), 1670.
30 Dong N F. Preparation and properties study of reactive aluminum-copper oxide membrane. Master's Thesis, Nanjing University of Science and Technology, China, 2008 (in Chinese).
董能发. 铝-氧化铜可反应性膜的制备与性能研究. 硕士学位论文, 南京理工大学, 2008.
31 Zhu P, Shen R Q, Ye Y H, et al. Chinese Journal of Energetic Materials, 2010, 18(4), 427 (in Chinese).
朱朋, 沈瑞琪, 叶迎华, 等. 含能材料, 2010, 18(4), 427.
32 Yang Y. Preparation and study on electrical and explosive characteristics of Al/CuO multilayer energetic bridge membrane. Master's Thesis, Nanjing University of Science and Technology, China, 2010 (in Chinese).
杨洋. Al/CuO多层含能桥膜的制备与电爆特性研究. 硕士学位论文, 南京理工大学, 2010.
33 Hu Y, Ye Y H, Shen R Q, et al. Chinese Journal of Energetic Materials, 2010, 18(3), 339 (in Chinese).
胡艳, 叶迎华, 沈瑞琪, 等. 含能材料, 2010, 18(3), 339.
34 Fu S, Zhu P, Ye Y H, et al. Journal of Functional Materials, 2013, 44(15), 2213 (in Chinese).
付帅, 朱朋, 叶迎华, 等. 功能材料, 2013, 44(15), 2213.
35 Forrest E C, Knepper P, Brumbach M T, et al. Journal of Applied Physics, 2017, 121(3), 034503.
36 Zhang K L, Rossi C, Petrantoni M, et al. Journal of Microelectromechanical Systems, 2008, 17(4), 832.
37 Zhu P, Shen R Q, Ye Y H, et al. Journal of Applied Physics, 2011, 110(7), 074513.
38 Ni D B, Yu G Q, Shi S N, et al. Initiators & Pyrotechnics, 2018(1), 28 (in Chinese).
倪德彬, 于国强, 史胜楠, 等. 火工品, 2018(1), 28.
39 Ni D B, Yu G Q, Shi S N, et al. Chinese Journal of Energetic Materials, 2019, 27(2), 149 (in Chinese).
倪德彬, 于国强, 史胜楠, 等. 含能材料, 2019, 27(2), 149.
40 Fu S. Electrical initiation mechanism of chemical reaction in reactive multilayer films. Ph. D. Thesis, Nanjing University of Science and Technology, China, 2020 (in Chinese).
付帅. 多层含能复合薄膜的电激发能量释放机理研究. 博士学位论文, 南京理工大学, 2020.
41 Wang L K. Research on MEMS fuze detonation transmission system based on Al/CuO converter. Master's Thesis, Shenyang Ligong University, China, 2022 (in Chinese).
王罗凯. 基于Al/CuO换能元MEMS引信传爆系统研究. 硕士学位论文, 沈阳理工大学, 2022.
42 Kinsey A H, Slusarski K, Sosa S, et al. ACS Applied Materials & Interfaces, 2017, 9 (26), 22026.
43 Zapata J, Nicollet A, Julien B, et al. Combustion and Flame, 2019, 205, 389.
44 Shi A, Zhang W, Shen R. Journal of Physics:Conference Series, 2021, 1721(1), 012003.
45 Sun L Z, Yuan G W, Gao L B, et al. Nature Reviews Methods Primers, 2021, 1(1), 5.
46 Bahri M, Gebre S H, Elaguech M A, et al. Coordination Chemistry Reviews, 2023, 475, 214910.
47 Aras G, Yilmaz A, Tasdelen H G, et al. Materials Science in Semiconductor Processing, 2022, 148, 106829.
48 Miao M Y, Liu T, Bai J Y, et al. Journal of Membrane Science, 2022, 648, 120357.
49 Aper T M, Yam F K, Beh K. Materials Chemistry and Physics, 2022, 275, 125244.
50 Rooney D, Negrotti D, Byassee T, et al. Journal of the Electrochemical Society, 2019, 137(4), 1162.
51 Youn Y H, Lee S J, Choi G R, et al. Materials Science & Engineering C, 2019, 100, 949.
52 Chen L L. High-throughput controlled growth of waferscale MoS2 with strictly monolayers. Master's Thesis, Hebei University of Science & Technology, China, 2022 (in Chinese).
陈立灵. 晶圆级严格单层MoS2的可控批量制备. 硕士学位论文, 河北科技大学, 2022.
53 Yousef S, Mohamed A. Journal of Mechanical Science and Technology, 2016, 30(11), 5135.
54 Sung J, Shin M, Deshmukh P, et al. Journal of Alloys and Compounds, 2018, 767, 924.
55 Lyu Y D, Yu X F, Yao B J, et al. Chinese Journal of Explosives & Propellants, 2021, 44(6), 811 (in Chinese).
吕英迪, 于宪峰, 姚冰洁, 等. 火炸药学报, 2021, 44(6), 811.
56 Wang J, Qiao Z Q, Yang Y T, et al. Chemistry , 2016, 22(1), 279.
57 Fonseca J, Lu J L. ACS Catalysis, 2021, 11(12), 7018.
58 Qiao R H, Yu H L, Ben L B, et al. Chemical Engineering Journal, 2024, 486, 149877.
59 Masmitjà G, Estarlich P, Lopez G, et al. Journal of Science:Advanced Materials and Devices, 2024, 9(2), 100698.
60 Chen R, Cao K, Wen Y W, et al. International Journal of Extreme Ma-nufacturing, 2024, 6(2), 022003.
61 Yang H M, Yang X C, Meng F C, et al. Journal of Catalysis, 2024, 431, 115364.
62 Jin R, Wang H W, Lu J L. Chinese Science Bulletin, 2023, 68(27), 3670 (in Chinese).
金瑞, 王恒伟, 路军岭. 科学通报, 2023, 68(27), 3670.
63 Hu Y Y, Lu J, Feng H. RSC advances, 2021, 11(20), 11918.
64 Collins E, Pantoya M, Vijayasai A, et, al. Surface & Coatings Technology, 2013, 215, 476.
65 Kwon J, Ducéré J M, Alphonse P, et, al. ACS Applied Materials & Interfaces, 2013, 5(3), 605.
66 Li Y X, Meng K J, Tian M M, et al. Combustion and Flame, 2024, 265, 113447.
67 Chen Y J, Sun X L, Jiao Q J, et al. Chinese Journal of Explosives & Propellants, 2022, 45 (3), 355 (in Chinese).
陈永进, 孙晓乐, 焦清介, 等. 火炸药学报, 2022, 45 (3), 355.
68 Tang D Y. The preparation and combustion mechanism of iodine-based metastable intermixed composite. Master's Thesis, Northwestern Polytechnical University, China, 2020 (in Chinese).
唐得云. 碘基亚稳态分子间复合物的制备及其燃烧机理. 硕士学位论文, 西北工业大学, 2020.
69 Ferguson J D, Buechler K J, Weimer A W, et al. Powder Technology, 2005, 156(2), 154.
70 Marín L, Gao Yu-zhi, Vallet M, et al. Langmuir:The ACS Journal of Surfaces and Colloids, 2017, 33(41), 11086.
71 Qin L J, Gong T, Hao H X, et al. Journal of Nanoparticle Research:An Interdisciplinary Forum for Nanoscale Science and Technology, 2013, 15(12), 1.
72 Qin L J, Yan N, Li J G, et al. RSC Advances, 2017, 7(12), 7188.
73 Hu Y Y, Li D, Qin L J, et al. ACS Applied Nano Materials, 2024, 7, 22592.
74 Yan N, Qin L J, Hao H X, et al. Applied Surface Science, 2017, 408, 51.
75 Qin L J, Gong T, Li J G, et al. Journal of Hazardous Materials, 2019, 378, 120655.
76 Qin L J, Yan N, Hao H X, et al. Applied Surface Science, 2018, 436, 548.
77 Chen R, Duan C L, Liu X, et al. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2017, 35(3), 03E111.
78 Duan C L. Surface modification of nanoparticles via atomie layer deposition and its applicationss. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2017 (in Chinese).
段晨龙. 基于原子层沉积的微纳米颗粒表面改性方法研究及其应用. 博士学位论文, 华中科技大学, 2017.
79 Shao H C. Design of low temperature atomic layer deposition equipment and study on hygroscopic stabilization of aluminum trihydride particles. Master's Thesis, Huazhong University of Science and Technology, China, 2023 (in Chinese).
邵华晨. 低温原子层沉积设备的设计及三氢化铝颗粒的吸湿稳定化研究. 硕士学位论文, 华中科技大学, 2023.
80 Chen R, Qu K, Li J W, et al. ACS Applied Nano Materials, 2018, 1(10), 5500.
81 Gong T, Qin L J, Yan R, et al. Journal of Inorganic Materials, 2014, 29(8), 869 (in Chinese).
龚婷, 秦利军, 严蕊, 等. 无机材料学报, 2014, 29(8), 869.
82 Agarwal P P K, Matsoukas T. ACS Applied materials & Interfaces, 2022, 14(30), 35255.
83 Hou Z Y, Tan J, Yeung K W K, et al. Surfaces and Interfaces, 2024, 48, 104249.
84 Wang J, Zhang J H, Shangguan Y Y, et al. Environmental Pollution, 2024, 347, 123744.
85 Liu F, Zhang L H, Zhang Z, et al. Dalton Transactions, 2024, 53(13), 5749.
86 Ahmadi K, Qaderi F, Rahmaninejad M S, et al. Geoenergy Science and Engineering, 2024, 238, 212882.
87 Hou D Y, Hu J, Meng F M, et al. Nonferrous Metallurgical Equipment, 2023, 37(1), 36 (in Chinese).
侯栋宇, 胡觉, 孟凡明, 等. 有色设备, 2023, 37(1), 36.
88 Wu C C, Miller K K, Walck S D, et al. MRS Advances, 2019, 4(27), 1589.
89 Miller K K, Gottfried L J, Walck D S, et al. Combustion and Flame, 2019, 206, 211.
90 Miller K K, Shancita I, Bhattacharia S K, et al. Materials & Design, 2021, 210, 110.
91 Yang C H, Zhang Y P, Chen P, et al. Journal of Solid Rocket Technology, 2017, 40(1), 76 (in Chinese).
杨春辉, 张燕平, 陈攀, 等. 固体火箭技术, 2017, 40(1), 76.
92 Zhang S Y, Zhang X, Peng H R, et al. Thermal Spray Technology, 2022, 14(3), 23(in Chinese).
张思源, 张鑫, 彭浩然, 等. 喷涂技术, 2022, 14(3), 23.
93 Agarwal P P K, Jensen D, Chen Chien-hua, et al. ACS Applied Materials & Interfaces, 2021, 13(5), 6844.
94 Agarwal P P K, Matsoukas T. Nano Letters, 2023, 23(12), 5541.
95 Shahravan A, Desai T, Matsoukas T. ACS Applied Materials & Interfaces, 2014, 6(10), 7942.
96 Flannery M, Desai G T, Matsoukas T, et al. Journal of Nanomaterials, 2015, 2015, 1.
[1] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[2] 朱世同, 吴隽, 吴浪, 邹彩旗, 刘蕾, 邹茜璐, 王欣然, 李涛涛. 面向集成应用的二维半导体生长进展及展望[J]. 材料导报, 2025, 39(18): 24080060-9.
[3] 党婵娟, 沈霞, 张保龙, 郭鹏飞. 无机卤化物钙钛矿CsPbCl3纳米线的可控制备与光学性质[J]. 材料导报, 2025, 39(11): 24040008-5.
[4] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[5] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[6] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[7] 赵波, 柳俊. 原子层/分子层沉积技术及其在半导体先进工艺中的应用[J]. 材料导报, 2024, 38(20): 23030081-12.
[8] 王云鹏, 刘宇宁, 王同波, 张嘉凝, 莫永达, 娄花芬. 铜箔衬底对化学气相沉积法制备石墨烯的影响[J]. 材料导报, 2024, 38(13): 22110222-5.
[9] 尹嘉琦, 沈文锋, 吕大伍, 赵京龙, 胡鹏飞, 宋伟杰. 金属氧化物半导体MEMS气体传感器研究进展[J]. 材料导报, 2024, 38(1): 22070075-14.
[10] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[11] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[12] 顾晓然, 李顺, 唐宇, 赵孔勋, 白书欣. 超级铝热剂的发展现状[J]. 材料导报, 2023, 37(10): 21060211-8.
[13] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[14] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[15] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed