Progress and Prospects of 2D Semiconductor Growth for Integration Applications
ZHU Shitong1,2,3, WU Jun1,2,*, WU Lang4, ZOU Caiqi4, LIU Lei3, ZOU Xilu3, WANG Xinran3,4, LI Taotao4,*
1 Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China 2 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 3 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China 4 School of Integrated Circuits, Nanjing University, Suzhou 215163, Jiangsu, China
Abstract: Two-dimensional semiconductors represented by transition metal sulfur compounds (TMDC) have atomic-level limit thickness, immunity to short channel effect, show great potentials for applications including field effect transistors, optoelectronic devices, sensors, flexible electronics, etc. The controllable synthesis of large-area, high-quality two-dimensional semiconductor materials is the basis for the above applications. This review hereby summarizes the recent progress in the preparation of two-dimensional semiconductor materials. Among them, the main topic includes large-area synthesis methods of two-dimensional semiconductor materials, epitaxial growth of single-crystals, defect engineering, transfer, low-temperature synthesis strategies and mainstream growth equipment. Finally, the growth of two-dimensional semiconductor materials is prospected. This review aims to provide more comprehensive support and guidance for the preparation and application of 2D semiconductor materials, and to promote the further development of the field of 2D materials.
1 Mack C A. IEEE Transactions on Semiconductor Manufacturing, 2011, 24, 202. 2 Lu Y C, Huang J K, Chao K Y, et al. Nature Nanotechnology, 2024, 19, 1066. 3 Chen R M. Nature Electronics, 2023, 6, 473. 4 Lin Y X, Cao Y, Ding S J, et al. Nature Electronics, 2023, 6, 506. 5 Peng L M. ACS Nano, 2023, 17, 22156. 6 Chhowall M, Jena D, Zhang H. Nature Reviews Materials, 2016, 1, 16052. 7 Xie L, Liao M Z, Wang S P, et al. Advanced Materials, 2017, 29, 1702522. 8 Li L, Deng Q R, Sun Y M, et al. Advanced Functional Materials, 2023, 33, 2304591. 9 Hu J Y, Zhou F, Wang J L, et al. Advanced Functional Materials, 2023, 33, 2303520. 10 Zhang T Y, Wang J T, Wu P, et al. Nature Reviews Materials, 2023, 8, 799. 11 Qiu H, Yu Z H, Zhao T G, et al. Science China Information Sciences, 2024, 67, 160400. 12 Zhou Z J, Hou F C, Huang X L, et al. Nature, 2023, 621, 499. 13 Li S S, Lin Y C, Liu X Y, et al. Nanoscale, 2019, 11, 16122. 14 Kang K, Xie S, Huang L, et al. Nature, 2015, 520, 656. 15 Zhu H Y, Nayir N, Choudhury T H, et al. Nature Nanotechnology, 2023, 18, 1295. 16 Cohen A, Mohapatra P K, Hettler S, et al. ACS Nano, 2023, 17, 5399. 17 Yu H, Huang L F, Zhou L Y, et al. Advanced Materials, 2024, 36, 2402855. 18 Yang P F, Zou X L, Zhang Z P, et al. Nature Communications, 2018, 9, 979. 19 Xia Y, Chen X Y, Wei J C, et al. Nature Materials, 2023, 22, 1324. 20 Xue G D, Sui X, Yin P, et al. Science Bulletin, 2023, 68, 1514. 21 Zhan Y J, Liu Z, Najmael S, et al. Small, 2012, 8, 966. 22 Kong D S, Wang H T, Cha J J, et al. Nano Letters, 13, 1341. 23 Wang X S, Feng H B, Wu Y M, et al. Journal of the American Chemical Society, 2013, 135, 5304. 24 Taheri P, Wang J Q, Xing H, et al. Materials Research Express, 2016, 3, 075009. 25 Pondick J V, Woods J M, Xing J, et al. ACS Applied Nano Materials, 2018, 1, 5655. 26 Cohen A, Patsha A, Mohapatra P K, et al. ACS Nano, 2020, 15, 526. 27 Yu H, Liao M Z, Zhao W J, et al. ACS Nano, 2017, 11, 12001. 28 Wang Q Q, Li N, Tang J, et al. Nano Letters, 2020, 20, 7193. 29 Xu X L, Pan Y, Liu S, et al. Science, 2021, 372, 195. 30 Li T T, Guo W, Ma L, et al. Nature Nanotechnology, 2021, 16, 1201. 31 Yang P F, Wang D S, Zhao X X, et al. Nature Communications, 2022, 13, 3238. 32 Wang J H, Xu X Z, Cheng T, et al. Nature Nanotechnology, 2022, 17, 33. 33 Fu J H, Min J C, Chang C K, et al. Nature Nanotechnology, 2023, 18, 1289. 34 Li L, Wang Q Q, Wu F F, et al. Nature Communications, 2024, 15, 1825. 35 Li T T, Yang Y, Zhou L Q, et al. National Science Open, 2023, 2, 20220055. 36 Chang Y M, Yang N, Min J C, et al. Advanced Functional Materials, 2024, 34, 2311387. 37 Wu T R, Zhang X F, Yuan Q H, et al. Nature Materials, 2016, 15, 43. 38 Ji Q Q, Su C, Mao N N, et al. Science Advances, 2021, 7, eabj3274. 39 Yang P F, Zhang S Q, Pan S Y, et al. ACS Nano, 2020, 14, 5036. 40 Li J, Wang S, Jiang Q, et al. Small, 2021, 17, 2100743. 41 Li X B, Dai X Y, Tang D Q, et al. Advanced Functional Materials, 2021, 31, 2102138. 42 Ding D G, Wang S, Xia Y P, et al. ACS Nano, 2022, 16, 17356. 43 Hu J Y, Quan W Z, Yang P F, et al. ACS Nano, 2022, 17, 312. 44 Dong J C, Zhang L N, Dai X Y, et al. Nature Communications, 2020, 11, 5862. 45 Yu Z H, Pan Y M, Shen Y T, et al. Nature Communications, 2014, 5, 5290. 46 Feng S M, Tan J Y, Zhao S L, et al. Small, 2020, 16, 2003357. 47 Zuo Y G, Liu C, Ding L P, et al. Nature Communications, 2022, 13, 1007. 48 Tang J, Wei Z, Wang Q Q, et al. Small, 2020, 16, e2004276. 49 Shen P C, Lin Y X, Su C, et al. Nature Electronics, 2022, 5, 28. 50 Wan Y, Li E, Yu Z H, et al. Nature Communications, 2022, 13, 4149. 51 Lin Y C, Jariwala B, Bersch B M, et al. ACS Nano, 2018, 12, 965. 52 Xu X M, Zhang C H, Hota M K, et al. Advanced Functional Materials, 2020, 30, 1908040. 53 Lu Z X, Sun L F, Xu G C, et al. ACS Nano, 2016, 10, 5237. 54 Fukamachi S, Solís-Fernández P, Kawahara K, et al. Nature Electronics, 2023, 6(2), 126. 55 Yuan G W, Liu W L, Huang X L, et al. Nature Communications, 2023, 14, 5457. 56 Wang Y, Zheng Y, Xu X F, et al. ACS Nano, 2011, 5, 9927. 57 Liu H J, Thi Q H, Man P, et al. Advanced Materials, 2023, 35, 2370102. 58 Meng W Q, Xu F F, Yu Z H, et al. Nature Nanotechnology, 2021, 16, 1231. 59 Kang K, Lee K H, Han Y, et al. Nature, 2017, 550, 229. 60 Wang W D, Clark N, Hamer M, et al. Nature Electronics, 2023, 6, 981. 61 Kwon J, Seol M, Yoo J, et al. Nature Electronics, 2024, 7, 356. 62 Bae S, Kim H, Lee Y, et al. Nature Nanotechnology, 2010, 5, 574. 63 Jang B, Kim C H, Choi S T, et al. 2D Materials, 2017, 4, 024002. 64 Juang Z Y, Wu C Y, Lu A Y, et al. Carbon, 2010, 48, 3169. 65 Zhu J D, Park J H, Vitale S A, et al. Nature Nanotechnology, 2023, 18, 456. 66 Hoang A T, Hu L, Kim B J, et al. Nature Nanotechnology, 2023, 18, 1439. 67 Qin B, Saeed M Z, Li Q Q, et al. Nature Communications, 2023, 14, 304. 68 Zhang K N, She Y H, Cai X B, et al. Nature Nanotechnology, 2023, 18, 448. 69 Zhang K N, Zhang T Y, You J W, et al. Small, 2024, 20, 2307587. 70 Ahn C, Lee J, Kim H U, et al. Advanced Materials, 2015, 27, 5223. 71 Seok H, Megra Y T, Kanade C K, et al. ACS Nano, 2021, 15, 707. 72 Park J H, Lu A Y, Shen P C, et al. Small Methods, 2021, 5, 2000720. 73 Macha M, Ji H G, Tripathi M, et al. Nanoscale Advances, 2022, 4, 4391.