Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24060196-11    https://doi.org/10.11896/cldb.24060196
  无机非金属及其复合材料 |
单晶光纤的包层结构制备研究进展
陈逸翀1,2, 程跃1,2, 王亚飞1, 邵冲云1, 于春雷1,3,*, 胡丽丽1,3
1 中国科学院上海光学精密机械研究所先进激光与光电功能材料部特种玻璃与光纤研究中心,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
3 国科大杭州高等研究院物理与光电工程学院,杭州 310024
Research Progress on the Preparation of Cladding Structure of Single Crystal Optical Fiber
CHEN Yichong1,2, CHENG Yue1,2, WANG Yafei1, SHAO Chongyun1, YU Chunlei1,3,*, HU Lili1,3
1 Research Center of Special Glass and Optical Fiber, Advanced Laser and Optoelectronic Functional Materials Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
下载:  全 文 ( PDF ) ( 23557KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单晶光纤兼具光纤的结构优势与晶体的优良物理性能,在高功率激光和高温传感等领域具有广泛的应用前景。目前,导模法(EFG)、微下拉法(μ-PD)和激光加热基座法(LHPG)等技术可生产百微米级单晶光纤,其中LHPG法可生产直径小于100 μm的单晶光纤。然而,晶体生长无法直接形成匹配的光学包层,限制了单晶光纤的发展。在过去40年里,单晶光纤包层制备技术已取得了许多进展,通过外包玻璃、晶体、多晶材料或飞秒激光改性大大提升了单晶光纤的应用潜力。本文系统地概述了各晶体生长技术的特点,并以蓝宝石(α-Al2O3)和钇铝石榴石(YAG)单晶光纤为例,总结了各单晶光纤包层制备方法的优势和局限性,最后展望了单晶光纤包层结构制备的未来发展和应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈逸翀
程跃
王亚飞
邵冲云
于春雷
胡丽丽
关键词:  单晶光纤  激光加热基座法  光纤包层  钇铝石榴石  蓝宝石    
Abstract: Single crystal fibers combine the structural characteristics of optical fibers with the excellent physical properties of crystals, and have broad application prospects in fields such as high-power lasers and high-temperature sensing. Nowadays, technologies such as edge defined film-feed growth (EFG), micro-pull-down (μ-PD) and laser-heated pedestal growth (LHPG) can produce single crystal fibers of the order of 100 microns. Among them, the LHPG method can produce single crystal fibers with a diameter of less than 100 μm. However, crystal growth cannot directly form the matching optical cladding, which limits the development of single crystal fibers. In the past four decades, many advances have been made in the preparation technology of single crystal fiber cladding. The application potential of single crystal fibers has been greatly improved by cladding with glass, crystal, polycrystalline or femtosecond laser modification. This paper systematically summarizes the characteristics of va-rious crystal growth technologies, and takes sapphire (α-Al2O3) and yttrium aluminum garnet (YAG) single crystal fibers as examples to summarize the advantages and limitations of various single crystal fiber cladding preparation methods. Finally, the future development and application of single crystal fiber cladding structure preparation are prospected.
Key words:  single crystal fiber    laser heated pedestal growth    fiber cladding    yttrium aluminum garnet    sapphire
发布日期:  2025-05-29
ZTFLH:  TQ342+.82  
基金资助: 中国科学院科学院战略性先导科技专项(XDB0650000)
通讯作者:  *于春雷,中科院上海光学精密机械研究所研究员、博士研究生导师,主要从事稀土掺杂高功率光纤材料及应用技术研究工作。sdycllcy@163.com   
作者简介:  陈逸翀,中国科学院上海光学精密机械研究所先进激光与光电功能材料部、特种玻璃与光纤研究中心硕士研究生,指导老师为于春雷。目前主要研究领域为单复合光纤的制备与应用。
引用本文:    
陈逸翀, 程跃, 王亚飞, 邵冲云, 于春雷, 胡丽丽. 单晶光纤的包层结构制备研究进展[J]. 材料导报, 2025, 39(11): 24060196-11.
CHEN Yichong, CHENG Yue, WANG Yafei, SHAO Chongyun, YU Chunlei, HU Lili. Research Progress on the Preparation of Cladding Structure of Single Crystal Optical Fiber. Materials Reports, 2025, 39(11): 24060196-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060196  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24060196
1 Czochralski J. Zeitschrift für Analytische Chemie, 1918, 57(8), 373.
2 Labelle H E. Journal of Crystal Growth, 1980, 50(1), 8.
3 Gu P, Wang P G, Guan W M, et al. Journal of Synthetic Crystals, 2021, 50(12), 2362(in Chinese).
顾鹏, 王鹏刚, 官伟明, 等. 人工晶体学报, 2021, 50(12), 2362.
4 Wang T, Zhang J, Zhang N, et al. Advanced Fiber Materials, 2019, 1(3-4), 163.
5 Yoshikawa A, Nikl M, Boulon G, et al. Optical Materials, 2007, 30(1), 6.
6 Xu X D. Journal of Synthetic Crystals, 2020, 49(10), 1952(in Chinese).
徐晓东. 人工晶体学报, 2020, 49(10), 1952.
7 Wan Y, Wen J, Jiang C, et al. Journal of Lightwave Technology, 2023, 41(16), 5452.
8 Xie Y Y. Studies of single-freguency laser based on YAG crystal-derived silica. Ph. D. Thesis, Shandong University, China, 2021(in Chinese).
谢永耀. 基于YAG晶体衍生光纤的单频激光技术研究. 博士学位论文, 山东大学, 2021.
9 Jia M, Wen J, Pan X, et al. Optics Express, 2021, 29(2), 1210.
10 Jia M, Wen J, Luo W, et al. Journal of Luminescence, 2020, 221, 117063.
11 Wang W C, Zhou B, Xu S H, et al. Progress in Materials Science, 2019, 101, 90.
12 Shi W, Fang Q, Li J H, et al. Infrared and Laser Engineering, 2017, 46(8), 9(in Chinese).
史伟, 房强, 李锦辉, 等. 红外与激光工程, 2017, 46(8), 9.
13 Minelly J, Di Teodoro F, Savage-Leuchs M, et al. In:Lasers and Applications in Science and Engineering. San Jose, CA, 2007, pp. 645302.
14 Zhao Q, Zhang Z, Wu B, et al. Photonics Research, 2018, 6(4), 326.
15 Rochat E, Haroud K, Dandliker R. IEEE Journal of Quantum Electronics, 1999, 35(10), 1419.
16 Winkelmann L. Injection-locked high power oscillator for advanced gravitational wave observatories, Cuvillier, 2012, pp. 14.
17 Wei Z S, Xie Y Y, Shao X B, et al. Infrared and Laser Engineering, 2022, 51(6), 75(in Chinese).
魏振帅, 谢永耀, 邵贤彬, 等. 红外与激光工程, 2022, 51(6), 75.
18 Dawson J W, Messerly M J, Heebner J E, et al. In:SPIE Defense, Security, and Sensing. Orlando, Florida, 2010, pp. 768611.
19 Délen X, Piehler S, Didierjean J, et al. Optics Letters, 2012, 37(14), 2898.
20 Markovic V, Rohrbacher A, Hofmann P, et al. Optics Express, 2015, 23(20), 25883.
21 Wei Y, Peng W, Li J, et al. Optics Letters, 2024, 49(7), 1664.
22 Thapa R, Gibson D, Gattass R R, et al. Optical Materials Express, 2016, 6(8), 2560.
23 Ohodnicki P R, Buric M P, Brown T D, et al. Nanoscale, 2013, 5(19), 9030.
24 Busch M, Ecke W, Latka I, et al. Measurement Science and Technology, 2009, 20(11), 115301.
25 Huang J, Lan X, Song Y, et al. IEEE Photonics Technology Letters, 2015, 27(13), 1398.
26 Liu B, Buric M P, Chorpening B T, et al. Journal of Lightwave Technology, 2018, 36(23), 5511.
27 Yamamoto S, Kamada K, Yoshikawa A. Scientific Reports, 2018, 8(1), 3194.
28 Lopez L, Pichon P, Loiseau P, et al. Scientific Reports, 2023, 13(1), 7199.
29 Chewpraditkul W, Swiderski L, Moszynski M, et al. IEEE Transactions on Nuclear Science, 2009, 56(6), 3800.
30 Lucchini M, Medvedeva T, Pauwels K, et al. Journal of Instrumentation, 2013, 8(10), 10017.
31 Wang D H, Hou W T, Li N, et al. Journal of Inorganic Materials, 2020, 35(9), 1053.
王东海, 侯文涛, 李纳, 等. 无机材料学报, 2020, 35(9), 1053.
32 Wang Q G, Xu J. Journal of Synthetic Crystals, 2021, 50(8), 1602(in Chinese).
王庆国, 徐军. 人工晶体学报, 2021, 50(8), 1602.
33 Katyba G M, Zaytsev K I, Dolganova I N, et al. Progress in Crystal Growth and Characterization of Materials, 2018, 64(4), 133.
34 Lebbou K. Optical Materials, 2017, 63, 13.
35 Yoshikawa A, Boulon G, Laversenne L, et al. Journal of Applied Physics, 2003, 94(9), 5479.
36 Wang T, Zhang J, Zhang N, et al. Laser & Optoelectronics Progress, 2019, 56(17), 159(in Chinese).
王涛, 张健, 张娜, 等. 激光与光电子学进展, 2019, 56(17), 159.
37 Sidletskiy O, Lebbou K, Kofanov D. CrystEngComm, 2021, 23(14), 2633.
38 Huang K Y, Hsu K Y, Jheng D Y, et al. Optics Express, 2008, 16(16), 12264.
39 Andreeta M R B, Hernandes A C. Laser-heated pedestal growth of oxide fibers, Springer Berlin Heidelberg, 2010, pp. 393.
40 Bera S, Nie C D, Harrington J A, et al. In:SPIE LASE. San Francisco, California, United States, 2016, 97260C.
41 Shaw L B, Bayya S, Kim W, et al. In:Conference on Lasers and Electro-Optics. San Jose, California:OSA, 2018, SF3I. 3.
42 Li G G, Liu L. Journal of Synthetic Crystals, 1995(3), 208(in Chinese).
李冠告, 刘骊. 人工晶体学报, 1995(3), 208.
43 Shen J W, Wang X, Shen Y X. Journal of Synthetic Crystals, 2008(1), 60(in Chinese).
沈剑威, 王迅, 沈永行. 人工晶体学报, 2008(1), 60.
44 Wu X, Zhang Z, Dai Y, et al. Journal of Luminescence, 2023, 263, 120042.
45 Bao R J. Study on Er3+/Yb3+ codoped YAG Y2O3 and Lu2O3 single crystal upconversion luminescence thermometry. Ph. D. Thesis, Zhejiang University, China, 2021(in Chinese).
包仁杰. Er3+/Yb3+共掺杂YAG、Y2O3、Lu2O3单晶光纤上转换荧光测温技术研究. 博士学位论文, 浙江大学, 2021.
46 Wang S Y. Study on the laser heated pedestal growth and properties of lutetium-based oxide single crystal fibers. Ph. D. thesis, Shandong University, China, 2023(in Chinese).
王思媛. 含镥氧化物单晶光纤的激光加热基座法制备及其性能研究. 博士学位论文, 山东大学, 2023.
47 Zhang Z Y, Wu Y F, Wang T, et al. Journal of Synthetic Crystals, 2023, 52(7), 1335(in Chinese).
张泽宇, 吴宇飞, 王涛, 等. 人工晶体学报, 2023, 52(7), 1335.
48 Wang M M, Yin Y R, Ding X Y, et al. Journal of Synthetic Crystals, 2023, 52(7), 1169(in Chinese).
王萌萌, 尹延如, 丁晓圆, 等. 人工晶体学报, 2023, 52(7), 1169.
49 Zhang N, Li Y, Yin Y R, et al. Chinese Journal of Luminescence, 2022, 43(2), 182(in Chinese).
张娜, 李阳, 尹延如, 等. 发光学报, 2022, 43(2), 182.
50 Wang T, Jia Z T, Li Y, et al. Journal of Synthetic Crystals, 2022, 51(3), 428(in Chinese).
王涛, 贾志泰, 李阳, 等. 人工晶体学报, 2022, 51(3), 428.
51 Liu B, Ohodnicki P R. Advanced Materials Technologies, 2021, 6(9), 2100125.
52 Chen H, Buric M, Ohodnicki P R, et al. Applied Physics Reviews, 2018, 5(1), 011102.
53 Hsu K Y, Yang M H, Jheng D Y, et al. Optical Materials Express, 2013, 3(6), 813.
54 Lai C C, Lo C Y, Nguyen D H, et al. Optics Express, 2016, 24(18), 20089.
55 Merberg G N, Harrington J A. Applied Optics, 1993, 32(18), 3201.
56 Philipp W H, Veitch L C, Jaskowiak M H. In:NASA Tech Briefs. 1994.
57 Yu C X, Shatrovoy O, Fan T Y, et al. Optics Letters, 2016, 41(22), 5202.
58 Daniel J M O, Simakov N, Hemming A, et al. In:CLEO/Europe-EQEC. Munich, 2017, pp. 1.
59 Kim W, Bayya S, Shaw B, et al. Optical Materials Express, 2019, 9(6), 2716.
60 Qadri S N, Kim W, Bayya S, et al. Coatings, 2021, 11(6), 644.
61 Dubinskii M, Zhang J, Fromzel V, et al. Optics Express, 2018, 26(4), 5092.
62 Myers J D, Kim W, Shaw L B, et al. In:Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Zurich, 2018, NoTu4D. 4.
63 Lee H, Sirn B, Park I S. In:SPIE Defense, Security, and Sensing. Baltimore, Maryland, USA, 2013, pp. 87330O.
64 Maxwell G, Ponting B, Gebremichael E, et al. Crystals, 2017, 7(1), 12.
65 Bera S, Picard Y N, Buric M, et al. In:Optical Components and Materials XVIII. United States, 2021, pp. 18.
66 Spratt W, Huang M, Murray T, et al. Journal of Applied Physics, 2013, 114(20), 203501.
67 Cheng Y, Hill C, Liu B, et al. Optical Engineering, 2015, 54(10), 107103.
68 Cheng Y, Hill C, Liu B, et al. Optical Engineering, 2016, 55(6), 066101.
69 Itoh K, Watanabe W, Nolte S, et al. MRS Bulletin, 2006, 31(8), 620.
70 Liu H, Chen F, Vázquez De Aldana J R, et al. Optics Letters, 2013, 38(17), 3294.
71 Shen Y, Wu B, Zhang B, et al. Optics & Laser Technology, 2023, 163, 109337.
72 Hnatovsky C, Taylor R S, Simova E, et al. Applied Physics A, 2006, 84(1-2), 47.
73 Croitoru G, Jipa F, Pavel N. Optical Materials, 2024, 148, 114772.
[1] 武安华, 周声耀, 戴云, 张中晗, 张振, 寇华敏, 王皙彬, 苏良碧. 激光加热基座法单晶光纤生长技术[J]. 材料导报, 2023, 37(3): 22110264-9.
[2] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[3] 申冰磊, 王中跃, 于春雷, 王欣, 王世凯, 胡丽丽, 韦玮. 稀土掺杂钇铝石榴石晶体激光光纤的研究进展[J]. 材料导报, 2021, 35(9): 9123-9132.
[4] 沈潇, 魏钦华, 张伟杰, 唐高, 陈振华, 秦来顺, 史宏声. 蓝宝石表面原位玻璃化处理及性能研究[J]. 材料导报, 2021, 35(22): 22022-22026.
[5] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[6] 胡扬轩,邓朝晖,万林林,李 敏. 用于蓝宝石材料加工的新型超精密抛光技术及复合抛光技术研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1452-1458.
[7] 司伟, 丁超, 潘伟. 聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1209-1212.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed