Research Progress on the Preparation of Cladding Structure of Single Crystal Optical Fiber
CHEN Yichong1,2, CHENG Yue1,2, WANG Yafei1, SHAO Chongyun1, YU Chunlei1,3,*, HU Lili1,3
1 Research Center of Special Glass and Optical Fiber, Advanced Laser and Optoelectronic Functional Materials Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3 School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
Abstract: Single crystal fibers combine the structural characteristics of optical fibers with the excellent physical properties of crystals, and have broad application prospects in fields such as high-power lasers and high-temperature sensing. Nowadays, technologies such as edge defined film-feed growth (EFG), micro-pull-down (μ-PD) and laser-heated pedestal growth (LHPG) can produce single crystal fibers of the order of 100 microns. Among them, the LHPG method can produce single crystal fibers with a diameter of less than 100 μm. However, crystal growth cannot directly form the matching optical cladding, which limits the development of single crystal fibers. In the past four decades, many advances have been made in the preparation technology of single crystal fiber cladding. The application potential of single crystal fibers has been greatly improved by cladding with glass, crystal, polycrystalline or femtosecond laser modification. This paper systematically summarizes the characteristics of va-rious crystal growth technologies, and takes sapphire (α-Al2O3) and yttrium aluminum garnet (YAG) single crystal fibers as examples to summarize the advantages and limitations of various single crystal fiber cladding preparation methods. Finally, the future development and application of single crystal fiber cladding structure preparation are prospected.
1 Czochralski J. Zeitschrift für Analytische Chemie, 1918, 57(8), 373. 2 Labelle H E. Journal of Crystal Growth, 1980, 50(1), 8. 3 Gu P, Wang P G, Guan W M, et al. Journal of Synthetic Crystals, 2021, 50(12), 2362(in Chinese). 顾鹏, 王鹏刚, 官伟明, 等. 人工晶体学报, 2021, 50(12), 2362. 4 Wang T, Zhang J, Zhang N, et al. Advanced Fiber Materials, 2019, 1(3-4), 163. 5 Yoshikawa A, Nikl M, Boulon G, et al. Optical Materials, 2007, 30(1), 6. 6 Xu X D. Journal of Synthetic Crystals, 2020, 49(10), 1952(in Chinese). 徐晓东. 人工晶体学报, 2020, 49(10), 1952. 7 Wan Y, Wen J, Jiang C, et al. Journal of Lightwave Technology, 2023, 41(16), 5452. 8 Xie Y Y. Studies of single-freguency laser based on YAG crystal-derived silica. Ph. D. Thesis, Shandong University, China, 2021(in Chinese). 谢永耀. 基于YAG晶体衍生光纤的单频激光技术研究. 博士学位论文, 山东大学, 2021. 9 Jia M, Wen J, Pan X, et al. Optics Express, 2021, 29(2), 1210. 10 Jia M, Wen J, Luo W, et al. Journal of Luminescence, 2020, 221, 117063. 11 Wang W C, Zhou B, Xu S H, et al. Progress in Materials Science, 2019, 101, 90. 12 Shi W, Fang Q, Li J H, et al. Infrared and Laser Engineering, 2017, 46(8), 9(in Chinese). 史伟, 房强, 李锦辉, 等. 红外与激光工程, 2017, 46(8), 9. 13 Minelly J, Di Teodoro F, Savage-Leuchs M, et al. In:Lasers and Applications in Science and Engineering. San Jose, CA, 2007, pp. 645302. 14 Zhao Q, Zhang Z, Wu B, et al. Photonics Research, 2018, 6(4), 326. 15 Rochat E, Haroud K, Dandliker R. IEEE Journal of Quantum Electronics, 1999, 35(10), 1419. 16 Winkelmann L. Injection-locked high power oscillator for advanced gravitational wave observatories, Cuvillier, 2012, pp. 14. 17 Wei Z S, Xie Y Y, Shao X B, et al. Infrared and Laser Engineering, 2022, 51(6), 75(in Chinese). 魏振帅, 谢永耀, 邵贤彬, 等. 红外与激光工程, 2022, 51(6), 75. 18 Dawson J W, Messerly M J, Heebner J E, et al. In:SPIE Defense, Security, and Sensing. Orlando, Florida, 2010, pp. 768611. 19 Délen X, Piehler S, Didierjean J, et al. Optics Letters, 2012, 37(14), 2898. 20 Markovic V, Rohrbacher A, Hofmann P, et al. Optics Express, 2015, 23(20), 25883. 21 Wei Y, Peng W, Li J, et al. Optics Letters, 2024, 49(7), 1664. 22 Thapa R, Gibson D, Gattass R R, et al. Optical Materials Express, 2016, 6(8), 2560. 23 Ohodnicki P R, Buric M P, Brown T D, et al. Nanoscale, 2013, 5(19), 9030. 24 Busch M, Ecke W, Latka I, et al. Measurement Science and Technology, 2009, 20(11), 115301. 25 Huang J, Lan X, Song Y, et al. IEEE Photonics Technology Letters, 2015, 27(13), 1398. 26 Liu B, Buric M P, Chorpening B T, et al. Journal of Lightwave Technology, 2018, 36(23), 5511. 27 Yamamoto S, Kamada K, Yoshikawa A. Scientific Reports, 2018, 8(1), 3194. 28 Lopez L, Pichon P, Loiseau P, et al. Scientific Reports, 2023, 13(1), 7199. 29 Chewpraditkul W, Swiderski L, Moszynski M, et al. IEEE Transactions on Nuclear Science, 2009, 56(6), 3800. 30 Lucchini M, Medvedeva T, Pauwels K, et al. Journal of Instrumentation, 2013, 8(10), 10017. 31 Wang D H, Hou W T, Li N, et al. Journal of Inorganic Materials, 2020, 35(9), 1053. 王东海, 侯文涛, 李纳, 等. 无机材料学报, 2020, 35(9), 1053. 32 Wang Q G, Xu J. Journal of Synthetic Crystals, 2021, 50(8), 1602(in Chinese). 王庆国, 徐军. 人工晶体学报, 2021, 50(8), 1602. 33 Katyba G M, Zaytsev K I, Dolganova I N, et al. Progress in Crystal Growth and Characterization of Materials, 2018, 64(4), 133. 34 Lebbou K. Optical Materials, 2017, 63, 13. 35 Yoshikawa A, Boulon G, Laversenne L, et al. Journal of Applied Physics, 2003, 94(9), 5479. 36 Wang T, Zhang J, Zhang N, et al. Laser & Optoelectronics Progress, 2019, 56(17), 159(in Chinese). 王涛, 张健, 张娜, 等. 激光与光电子学进展, 2019, 56(17), 159. 37 Sidletskiy O, Lebbou K, Kofanov D. CrystEngComm, 2021, 23(14), 2633. 38 Huang K Y, Hsu K Y, Jheng D Y, et al. Optics Express, 2008, 16(16), 12264. 39 Andreeta M R B, Hernandes A C. Laser-heated pedestal growth of oxide fibers, Springer Berlin Heidelberg, 2010, pp. 393. 40 Bera S, Nie C D, Harrington J A, et al. In:SPIE LASE. San Francisco, California, United States, 2016, 97260C. 41 Shaw L B, Bayya S, Kim W, et al. In:Conference on Lasers and Electro-Optics. San Jose, California:OSA, 2018, SF3I. 3. 42 Li G G, Liu L. Journal of Synthetic Crystals, 1995(3), 208(in Chinese). 李冠告, 刘骊. 人工晶体学报, 1995(3), 208. 43 Shen J W, Wang X, Shen Y X. Journal of Synthetic Crystals, 2008(1), 60(in Chinese). 沈剑威, 王迅, 沈永行. 人工晶体学报, 2008(1), 60. 44 Wu X, Zhang Z, Dai Y, et al. Journal of Luminescence, 2023, 263, 120042. 45 Bao R J. Study on Er3+/Yb3+ codoped YAG Y2O3 and Lu2O3 single crystal upconversion luminescence thermometry. Ph. D. Thesis, Zhejiang University, China, 2021(in Chinese). 包仁杰. Er3+/Yb3+共掺杂YAG、Y2O3、Lu2O3单晶光纤上转换荧光测温技术研究. 博士学位论文, 浙江大学, 2021. 46 Wang S Y. Study on the laser heated pedestal growth and properties of lutetium-based oxide single crystal fibers. Ph. D. thesis, Shandong University, China, 2023(in Chinese). 王思媛. 含镥氧化物单晶光纤的激光加热基座法制备及其性能研究. 博士学位论文, 山东大学, 2023. 47 Zhang Z Y, Wu Y F, Wang T, et al. Journal of Synthetic Crystals, 2023, 52(7), 1335(in Chinese). 张泽宇, 吴宇飞, 王涛, 等. 人工晶体学报, 2023, 52(7), 1335. 48 Wang M M, Yin Y R, Ding X Y, et al. Journal of Synthetic Crystals, 2023, 52(7), 1169(in Chinese). 王萌萌, 尹延如, 丁晓圆, 等. 人工晶体学报, 2023, 52(7), 1169. 49 Zhang N, Li Y, Yin Y R, et al. Chinese Journal of Luminescence, 2022, 43(2), 182(in Chinese). 张娜, 李阳, 尹延如, 等. 发光学报, 2022, 43(2), 182. 50 Wang T, Jia Z T, Li Y, et al. Journal of Synthetic Crystals, 2022, 51(3), 428(in Chinese). 王涛, 贾志泰, 李阳, 等. 人工晶体学报, 2022, 51(3), 428. 51 Liu B, Ohodnicki P R. Advanced Materials Technologies, 2021, 6(9), 2100125. 52 Chen H, Buric M, Ohodnicki P R, et al. Applied Physics Reviews, 2018, 5(1), 011102. 53 Hsu K Y, Yang M H, Jheng D Y, et al. Optical Materials Express, 2013, 3(6), 813. 54 Lai C C, Lo C Y, Nguyen D H, et al. Optics Express, 2016, 24(18), 20089. 55 Merberg G N, Harrington J A. Applied Optics, 1993, 32(18), 3201. 56 Philipp W H, Veitch L C, Jaskowiak M H. In:NASA Tech Briefs. 1994. 57 Yu C X, Shatrovoy O, Fan T Y, et al. Optics Letters, 2016, 41(22), 5202. 58 Daniel J M O, Simakov N, Hemming A, et al. In:CLEO/Europe-EQEC. Munich, 2017, pp. 1. 59 Kim W, Bayya S, Shaw B, et al. Optical Materials Express, 2019, 9(6), 2716. 60 Qadri S N, Kim W, Bayya S, et al. Coatings, 2021, 11(6), 644. 61 Dubinskii M, Zhang J, Fromzel V, et al. Optics Express, 2018, 26(4), 5092. 62 Myers J D, Kim W, Shaw L B, et al. In:Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Zurich, 2018, NoTu4D. 4. 63 Lee H, Sirn B, Park I S. In:SPIE Defense, Security, and Sensing. Baltimore, Maryland, USA, 2013, pp. 87330O. 64 Maxwell G, Ponting B, Gebremichael E, et al. Crystals, 2017, 7(1), 12. 65 Bera S, Picard Y N, Buric M, et al. In:Optical Components and Materials XVIII. United States, 2021, pp. 18. 66 Spratt W, Huang M, Murray T, et al. Journal of Applied Physics, 2013, 114(20), 203501. 67 Cheng Y, Hill C, Liu B, et al. Optical Engineering, 2015, 54(10), 107103. 68 Cheng Y, Hill C, Liu B, et al. Optical Engineering, 2016, 55(6), 066101. 69 Itoh K, Watanabe W, Nolte S, et al. MRS Bulletin, 2006, 31(8), 620. 70 Liu H, Chen F, Vázquez De Aldana J R, et al. Optics Letters, 2013, 38(17), 3294. 71 Shen Y, Wu B, Zhang B, et al. Optics & Laser Technology, 2023, 163, 109337. 72 Hnatovsky C, Taylor R S, Simova E, et al. Applied Physics A, 2006, 84(1-2), 47. 73 Croitoru G, Jipa F, Pavel N. Optical Materials, 2024, 148, 114772.