Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080068-10    https://doi.org/10.11896/cldb.24080068
  金属与金属基复合材料 |
钢铁材料中相间析出行为研究进展
张向军1, 李天瑞1,2, 杨永2,*, 陈志强1, 徐勇1, 卢勇1
1 中冶华天工程技术有限公司,南京 210019
2 安徽工业大学冶金工程学院,安徽 马鞍山 243032
Research Progress on Interphase Precipitation Behavior in Steel Materials
ZHANG Xiangjun1, LI Tianrui2, YANG Yong2,*, CHEN Zhiqiang1 , XU Yong1, LU Yong1
1 MCC Huatian Engineering & Technology Corporation, Nanjing 210019, China
2 School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
下载:  全 文 ( PDF ) ( 35694KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相间析出是一种在母相向子相相变过程中在相界面处产生析出粒子的现象,广泛存在于金属材料中。相间析出因其独特的相变模式及较强的析出强化效应在科研界及工业界受到广泛关注。本文首先介绍了钢铁材料中的相间析出现象,包括合金碳化物、渗碳体、Laves相、Cu析出,以及它们的分布形态、与基体的取向关系;随后介绍了相间析出的观察条件、相关机制模型(台阶机制、弓出机制、准台阶机制、溶质耗散模型和共析机制)及合金成分、相变温度、冷却速率等因素对相间析出的影响规律,最后对相间析出行为可能的研究方向提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张向军
李天瑞
杨永
陈志强
徐勇
卢勇
关键词:  相间析出  合金碳化物  渗碳体  Laves相    
Abstract: Interphase precipitation is a phenomenon in which precipitation particles are generated at the phase interface during the phase transition from the mother phase to the daughter phase, which is widely present in metallic materials. Interphase precipitation has attracted widespread attention in the scientific and industrial fields due to its unique phase transition mode and strong precipitation strengthening effect. Firstly, this article introduces the phenomenon of interphase precipitation in steel materials, including alloy carbides, cementite, Laves phases, Cu precipitation, as well as their distribution patterns and orientation relationships with the matrix. Then, the observation conditions, relevant mechanism models (ledge mechanism, bowing mechanism, quasi-ledge mechanism, solute-depletion model and eutectoid mechanism), and the influence of alloy composition, phase transformation temperature, cooling rate and other factors on interphase precipitation are introduced. Finally, the possible research directions for interphase precipitation behavior are proposed.
Key words:  interphase precipitation    alloyed carbide    cementite    Laves phase
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TG142.1  
基金资助: 中冶集团“181计划”项目;安徽省自然科学基金(2108085QE214)
通讯作者:  *杨永,博士,安徽工业大学冶金工程学院讲师。主要从事(超)高强度钢组织性能调控及第二相析出热/动力学计算。yyang@ahut.edu.cn   
作者简介:  张向军,博士,中冶华天工程技术有限公司高级工程师。主要从事高强钢组织性能调控、轧钢工艺技术研发工作。
引用本文:    
张向军, 李天瑞, 杨永, 陈志强, 徐勇, 卢勇. 钢铁材料中相间析出行为研究进展[J]. 材料导报, 2025, 39(18): 24080068-10.
ZHANG Xiangjun, LI Tianrui, YANG Yong, CHEN Zhiqiang , XU Yong, LU Yong. Research Progress on Interphase Precipitation Behavior in Steel Materials. Materials Reports, 2025, 39(18): 24080068-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080068  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080068
1 Morrison W B. Journal of the Iron and Steel Institute, 1963, 201(4), 317.
2 Khalid F, Edmonds D. Materials Science and Technology, 1993, 9(5), 384.
3 Tsai S P, Jen C H, Yen H W, et al. Materials Characterization, 2017, 123, 153.
4 Jang J H, Heo Y U, Lee C H, et al. Materials Science and Technology, 2013, 29(3), 309.
5 Chen J, Lv M Y, Tang S, et al. Materials Science & Engineering A, 2014, 594, 389.
6 Rodriguez-Galeano K F, Nutter J, Azakli Y, et al. Materials Science & Engineering A, 2024, 893, 146140.
7 Ohmori Y, Davenport A T. Transactions of the Iron and Steel Institute of Japan, 1972, 12(2), 128.
8 Campbell K, Honeycombe R W. Metal Science, 1974, 8(1), 197.
9 Ricks R A, Howell P R, Honeycombe R W. Metallurgical Transactions A, 1979, 10(8), 1049.
10 Wasynczuk, J A, Fisher R M, Thomas G. Metallurgical Transactions A, 1986, 17(12), 2163.
11 Chairuangsri T, Edmonds D V. Acta Materialia, 2000, 48(15), 3931.
12 Kobayashi S, Hibaru T. ISIJ International, 2015, 55(1), 293.
13 Yuan Z, Perrut M, Kobayashi S. ISIJ International, 2023, 63(8), 1413.
14 Shen Y, Zdanuk E, Krock R. Metallurgical Transactions, 1971, 2, 2839.
15 Van Rooijen V A, Van Royen E W, Vrijen J, et al. Acta Metallurgica, 1975, 23(8), 987.
16 Sharma G, Ramanujan R V, Tiwari G P. Materials Science & Enginee-ring A, 1999, 269(1), 21.
17 Miyamoto G, Hori R, Poorganji B, et al. ISIJ International, 2011, 51(10), 1733.
18 Wang B, Liu Z Y, Zhou X G, et al. Materials Science & Engineering A, 2013, 575, 189.
19 Dlouhý J, Donik Č. Materials Letters, 2023, 348, 134658.
20 Zhang Y, Miyamoto G, Shinbo K, et al. Metallurgical and Materials Transactions A, 2020, 51(12), 6149.
21 Ohmori Y. Transactions of the Iron and Steel Institute of Japan, 1972, 12, 350.
22 Berry F G, Honeycombe R W K. Metallurgical Transactions, 1970, 1, 3279.
23 Kuo K H, Jia C L. Acta Metallurgica, 1985, 33(6), 991.
24 Yen H W, Chen P Y, Huang C Y, et al. Acta Materialia, 2011, 59(16), 6264.
25 Yen H W, Chen C Y, Wang T Y, et al. Materials Science and Technology, 2010, 26(4), 421.
26 Yang Y, Zhang X F, Li Y M, et al. Journal of Materials Science, 2021, 56(3), 2638.
27 Wang Z, Sun X, Yang Z, et al. Materials Science & Engineering A, 2013, 573, 84.
28 Kobayashi S, Hara T. Applied Sciences, 2021, 11(5), 2327.
29 Cipolla L, Danielsen H K, Venditti D, et al. Acta Materialia, 2010, 58(2), 669.
30 Maddi L, Deshmukh G S, Ballal A, et al. Materials Science & Enginee-ring A, 2016, 668, 215.
31 Li C H, Chen C Y, Tsai S P, et al. Materials & Design, 2019, 166, 107613.
32 Li X L, Wang Z D. Acta Metallurgica Sinica, 2015, 51(4), 417(in Chinese).
李小琳, 王昭东. 金属学报, 2015, 51(4), 417.
33 Zhang Y J, Miyamoto G, Shinbo K, et al. Scripta Materialia, 2013, 69(1), 17.
34 Honeycombe R, Mehl R. Metallurgical Transactions A, 1976, 7, 915.
35 Ricks R A, Howell P R. Metal Science, 1982, 16, 317.
36 Ricks R A, Howell P R. Acta Metallurgica, 1983, 31(6), 853.
37 Roberts W, Sandberg A, Siwecki T. Proc. Conf. Vanadium Steels, Krakow, Vanitec, 1980.
38 Zhang Y J, Miyamoto G, Shinbo K, et al. Acta Materialia, 2017, 128, 166.
39 Tsai S P, Su T C, Yang J R, et al. Materials & Design, 2017, 119, 319.
40 Dong H, Chen H, Zhang B, et al. Acta Materialia, 2022, 223, 117475.
41 Zhang Y J, Miyamoto G, Shinbo K, et al. Acta Materialia, 2015, 84, 375.
42 Yen H W, Huang C Y, Yang J R. Advanced Materials Research, 2010, 89, 663.
43 Li X L, Wang Z D. Journal of Northeastern University (Natural Science), 2015, 36(12), 1701(in Chinese).
李小琳, 王昭东. 东北大学学报(自然科学版), 2015, 36(12), 1701.
44 Gray J M, Yeo R B G. ASM Trans. Quart, 1968, 61, 255.
45 Chen S, Li L, Peng Z, et al. Journal of Materials Research and Techno-logy, 2021, 10, 580.
46 Huang Z, Yu H, Song C, et al. Steel Research International, 2020, 91(2), 1900444.
47 Kim Y, Hong S, Huh Y, et al. Materials Science and Engineering A, 2014, 615(5), 255.
48 Bikmukhametov I, Beladi H, Wang J, et al. Acta Materialia, 2019, 170, 75.
49 Gong P, Liu X G, Rijkenberg A, et al. Acta Materialia, 2018, 161, 374.
50 Okamoto R, Borgenstam A, Ågren J. Acta Materialia, 2010, 58(14), 4783.
51 Chen M Y, GounéM, Verdier M, et al. Acta Materialia, 2014, 64, 78.
52 Chen C Y, Yen H W, Kao F H, et al. Materials Science & Engineering A, 2009, 499(1), 162.
53 Chen C Y, Yang J R, Chen C C, et al. Materials Characterization, 2016, 114, 18.
54 Thompson S, Krauss G. Metallurgical Transactions A, 1989, 20, 2279.
55 Nakahara T, Funakawa Y, Inazumi T, et al. In:Thermomechanical processing of steels, Church House Conference Centre. London, 2000, pp.24.
56 Morita M A, Kurosawa N, Sakai S, et al. Zairyo to Purosesu (Current Advances in Materials and Processes), 1992, 5(6), 1863.
57 Kazutoshi K. Materia Japan, 1996, 35(1), 32.
58 Morita M, Shimizu T, Furukimi O, et al. Materia, 1998, 37, 513.
59 Murakami T, Kinefuchi M, Nomura M, et al. Journal of the Japan Institute of Metals, 2008, 72, 832.
60 Kamikawa N, Hirohashi M, Sato Y, et al. ISIJ International, 2015, 55(8), 1781.
61 Seto K, Funakawa Y, Kaneko S. JFE Technical Report, 2007, 10, 19.
62 Funakawa Y, Shiozaki T, Tomita K, et al. ISIJ International, 2004, 44(11), 1945.
63 Ekong A, Ugbebor J, Brown B. Journal of Scientific Research and Reports, 2021, 27(6), 72.
64 Ishola A, Matellini D, Wang J. Safety Science, 2020, 127, 104666.
65 Fishwick T. Loss Prevention Bulletin, 2012, 228, 11.
66 Alshahrani M, Ooi S, Divitini G, et al. International Journal of Hydrogen Energy, 2024, 50, 189.
67 Alshahrani M, Ooi S, Colliander M, et al. Metallurgical and Materials Transactions A, 2022, 53(12), 4221.
68 Cong J, Li J, Fan J, et al. Materials, 2020, 13(19), 4294.
69 Li Z, Zhang K, Wang W, et al. Steel Research International, 2022, 93(5), 2100515.
70 Okamoto R, Ågren J. Acta Materialia, 2010, 58(14), 4791.
71 Chen M Y, Gouné M, Militzer M, et al. Metallurgical and Materials Transactions A, 2014, 45(12), 5351.
72 Clark S, Janik V, Lan Y, et al. ISIJ International, 2017, 57(3), 524.
73 Lagneborg R, Zajac S. Metallurgical and Materials Transactions A, 2001, 32(1), 39.
74 Liu W J. Metallurgical and Materials Transactions A, 1993, 24(10), 2195.
75 Li P, Todd J A. Metallurgical Transactions A, 1988, 19, 2139.
76 Todd J A, Li P, Copley S M. Metallurgical Transactions A, 1988, 19, 2133.
77 Rios P R. Journal of Materials Science Letters, 1993, 12, 734.
78 Murakami T, Hatano H, Miyamoto G, et al. ISIJ International, 2012, 52(4), 616.
79 Wei X, Zwaag S van der, Jia Z. Acta Materialia, 2022, 235, 118103.
80 Ruiz E, Ferreño D, Cuartas M, et al. International Journal of Fatigue, 2022, 159, 106785.
81 Xie Q, Suvarna M, Li J, et al. Materials & Design, 2021, 197, 109201.
[1] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[2] 陈作宁, 师仲然, 胡骞, 王益起, 罗小兵. 渗碳体形态提高船体结构钢塑性机理研究[J]. 材料导报, 2025, 39(14): 24050191-9.
[3] 赵巍, 花福安, 李建平. 基于机器学习的Laves相生成焓预测研究[J]. 材料导报, 2022, 36(Z1): 21120179-5.
[4] 孙朋朋, 闵娜, 左鹏鹏, 吴晓春. 7Cr5Mo2V冷作模具钢回火特性研究[J]. 材料导报, 2019, 33(z1): 377-381.
[5] 丁雨田,豆正义,高钰璧,高 鑫,李海峰,刘德学. 原位观察不同冷却速率下GH3625合金的凝固过程[J]. 《材料导报》期刊社, 2017, 31(24): 150-155.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed