Research Progress on Interphase Precipitation Behavior in Steel Materials
ZHANG Xiangjun1, LI Tianrui2, YANG Yong2,*, CHEN Zhiqiang1 , XU Yong1, LU Yong1
1 MCC Huatian Engineering & Technology Corporation, Nanjing 210019, China 2 School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
Abstract: Interphase precipitation is a phenomenon in which precipitation particles are generated at the phase interface during the phase transition from the mother phase to the daughter phase, which is widely present in metallic materials. Interphase precipitation has attracted widespread attention in the scientific and industrial fields due to its unique phase transition mode and strong precipitation strengthening effect. Firstly, this article introduces the phenomenon of interphase precipitation in steel materials, including alloy carbides, cementite, Laves phases, Cu precipitation, as well as their distribution patterns and orientation relationships with the matrix. Then, the observation conditions, relevant mechanism models (ledge mechanism, bowing mechanism, quasi-ledge mechanism, solute-depletion model and eutectoid mechanism), and the influence of alloy composition, phase transformation temperature, cooling rate and other factors on interphase precipitation are introduced. Finally, the possible research directions for interphase precipitation behavior are proposed.
1 Morrison W B. Journal of the Iron and Steel Institute, 1963, 201(4), 317. 2 Khalid F, Edmonds D. Materials Science and Technology, 1993, 9(5), 384. 3 Tsai S P, Jen C H, Yen H W, et al. Materials Characterization, 2017, 123, 153. 4 Jang J H, Heo Y U, Lee C H, et al. Materials Science and Technology, 2013, 29(3), 309. 5 Chen J, Lv M Y, Tang S, et al. Materials Science & Engineering A, 2014, 594, 389. 6 Rodriguez-Galeano K F, Nutter J, Azakli Y, et al. Materials Science & Engineering A, 2024, 893, 146140. 7 Ohmori Y, Davenport A T. Transactions of the Iron and Steel Institute of Japan, 1972, 12(2), 128. 8 Campbell K, Honeycombe R W. Metal Science, 1974, 8(1), 197. 9 Ricks R A, Howell P R, Honeycombe R W. Metallurgical Transactions A, 1979, 10(8), 1049. 10 Wasynczuk, J A, Fisher R M, Thomas G. Metallurgical Transactions A, 1986, 17(12), 2163. 11 Chairuangsri T, Edmonds D V. Acta Materialia, 2000, 48(15), 3931. 12 Kobayashi S, Hibaru T. ISIJ International, 2015, 55(1), 293. 13 Yuan Z, Perrut M, Kobayashi S. ISIJ International, 2023, 63(8), 1413. 14 Shen Y, Zdanuk E, Krock R. Metallurgical Transactions, 1971, 2, 2839. 15 Van Rooijen V A, Van Royen E W, Vrijen J, et al. Acta Metallurgica, 1975, 23(8), 987. 16 Sharma G, Ramanujan R V, Tiwari G P. Materials Science & Enginee-ring A, 1999, 269(1), 21. 17 Miyamoto G, Hori R, Poorganji B, et al. ISIJ International, 2011, 51(10), 1733. 18 Wang B, Liu Z Y, Zhou X G, et al. Materials Science & Engineering A, 2013, 575, 189. 19 Dlouhý J, Donik Č. Materials Letters, 2023, 348, 134658. 20 Zhang Y, Miyamoto G, Shinbo K, et al. Metallurgical and Materials Transactions A, 2020, 51(12), 6149. 21 Ohmori Y. Transactions of the Iron and Steel Institute of Japan, 1972, 12, 350. 22 Berry F G, Honeycombe R W K. Metallurgical Transactions, 1970, 1, 3279. 23 Kuo K H, Jia C L. Acta Metallurgica, 1985, 33(6), 991. 24 Yen H W, Chen P Y, Huang C Y, et al. Acta Materialia, 2011, 59(16), 6264. 25 Yen H W, Chen C Y, Wang T Y, et al. Materials Science and Technology, 2010, 26(4), 421. 26 Yang Y, Zhang X F, Li Y M, et al. Journal of Materials Science, 2021, 56(3), 2638. 27 Wang Z, Sun X, Yang Z, et al. Materials Science & Engineering A, 2013, 573, 84. 28 Kobayashi S, Hara T. Applied Sciences, 2021, 11(5), 2327. 29 Cipolla L, Danielsen H K, Venditti D, et al. Acta Materialia, 2010, 58(2), 669. 30 Maddi L, Deshmukh G S, Ballal A, et al. Materials Science & Enginee-ring A, 2016, 668, 215. 31 Li C H, Chen C Y, Tsai S P, et al. Materials & Design, 2019, 166, 107613. 32 Li X L, Wang Z D. Acta Metallurgica Sinica, 2015, 51(4), 417(in Chinese). 李小琳, 王昭东. 金属学报, 2015, 51(4), 417. 33 Zhang Y J, Miyamoto G, Shinbo K, et al. Scripta Materialia, 2013, 69(1), 17. 34 Honeycombe R, Mehl R. Metallurgical Transactions A, 1976, 7, 915. 35 Ricks R A, Howell P R. Metal Science, 1982, 16, 317. 36 Ricks R A, Howell P R. Acta Metallurgica, 1983, 31(6), 853. 37 Roberts W, Sandberg A, Siwecki T. Proc. Conf. Vanadium Steels, Krakow, Vanitec, 1980. 38 Zhang Y J, Miyamoto G, Shinbo K, et al. Acta Materialia, 2017, 128, 166. 39 Tsai S P, Su T C, Yang J R, et al. Materials & Design, 2017, 119, 319. 40 Dong H, Chen H, Zhang B, et al. Acta Materialia, 2022, 223, 117475. 41 Zhang Y J, Miyamoto G, Shinbo K, et al. Acta Materialia, 2015, 84, 375. 42 Yen H W, Huang C Y, Yang J R. Advanced Materials Research, 2010, 89, 663. 43 Li X L, Wang Z D. Journal of Northeastern University (Natural Science), 2015, 36(12), 1701(in Chinese). 李小琳, 王昭东. 东北大学学报(自然科学版), 2015, 36(12), 1701. 44 Gray J M, Yeo R B G. ASM Trans. Quart, 1968, 61, 255. 45 Chen S, Li L, Peng Z, et al. Journal of Materials Research and Techno-logy, 2021, 10, 580. 46 Huang Z, Yu H, Song C, et al. Steel Research International, 2020, 91(2), 1900444. 47 Kim Y, Hong S, Huh Y, et al. Materials Science and Engineering A, 2014, 615(5), 255. 48 Bikmukhametov I, Beladi H, Wang J, et al. Acta Materialia, 2019, 170, 75. 49 Gong P, Liu X G, Rijkenberg A, et al. Acta Materialia, 2018, 161, 374. 50 Okamoto R, Borgenstam A, Ågren J. Acta Materialia, 2010, 58(14), 4783. 51 Chen M Y, GounéM, Verdier M, et al. Acta Materialia, 2014, 64, 78. 52 Chen C Y, Yen H W, Kao F H, et al. Materials Science & Engineering A, 2009, 499(1), 162. 53 Chen C Y, Yang J R, Chen C C, et al. Materials Characterization, 2016, 114, 18. 54 Thompson S, Krauss G. Metallurgical Transactions A, 1989, 20, 2279. 55 Nakahara T, Funakawa Y, Inazumi T, et al. In:Thermomechanicalprocessing of steels, Church House Conference Centre. London, 2000, pp.24. 56 Morita M A, Kurosawa N, Sakai S, et al. Zairyo to Purosesu (Current Advances in Materials and Processes), 1992, 5(6), 1863. 57 Kazutoshi K. Materia Japan, 1996, 35(1), 32. 58 Morita M, Shimizu T, Furukimi O, et al. Materia, 1998, 37, 513. 59 Murakami T, Kinefuchi M, Nomura M, et al. Journal of the Japan Institute of Metals, 2008, 72, 832. 60 Kamikawa N, Hirohashi M, Sato Y, et al. ISIJ International, 2015, 55(8), 1781. 61 Seto K, Funakawa Y, Kaneko S. JFE Technical Report, 2007, 10, 19. 62 Funakawa Y, Shiozaki T, Tomita K, et al. ISIJ International, 2004, 44(11), 1945. 63 Ekong A, Ugbebor J, Brown B. Journal of Scientific Research and Reports, 2021, 27(6), 72. 64 Ishola A, Matellini D, Wang J. Safety Science, 2020, 127, 104666. 65 Fishwick T. Loss Prevention Bulletin, 2012, 228, 11. 66 Alshahrani M, Ooi S, Divitini G, et al. International Journal of Hydrogen Energy, 2024, 50, 189. 67 Alshahrani M, Ooi S, Colliander M, et al. Metallurgical and Materials Transactions A, 2022, 53(12), 4221. 68 Cong J, Li J, Fan J, et al. Materials, 2020, 13(19), 4294. 69 Li Z, Zhang K, Wang W, et al. Steel Research International, 2022, 93(5), 2100515. 70 Okamoto R, Ågren J. Acta Materialia, 2010, 58(14), 4791. 71 Chen M Y, Gouné M, Militzer M, et al. Metallurgical and Materials Transactions A, 2014, 45(12), 5351. 72 Clark S, Janik V, Lan Y, et al. ISIJ International, 2017, 57(3), 524. 73 Lagneborg R, Zajac S. Metallurgical and Materials Transactions A, 2001, 32(1), 39. 74 Liu W J. Metallurgical and Materials Transactions A, 1993, 24(10), 2195. 75 Li P, Todd J A. Metallurgical Transactions A, 1988, 19, 2139. 76 Todd J A, Li P, Copley S M. Metallurgical Transactions A, 1988, 19, 2133. 77 Rios P R. Journal of Materials Science Letters, 1993, 12, 734. 78 Murakami T, Hatano H, Miyamoto G, et al. ISIJ International, 2012, 52(4), 616. 79 Wei X, Zwaag S van der, Jia Z. Acta Materialia, 2022, 235, 118103. 80 Ruiz E, Ferreño D, Cuartas M, et al. International Journal of Fatigue, 2022, 159, 106785. 81 Xie Q, Suvarna M, Li J, et al. Materials & Design, 2021, 197, 109201.