Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080072-6    https://doi.org/10.11896/cldb.24080072
  金属与金属基复合材料 |
高温高压法制备高导热金刚石/铜复合材料的研究现状
汤黎辉, 肖长江, 周彬, 栗正新*
河南工业大学材料科学与工程学院,郑州 450001
Review on the Preparation of High Thermal Conductivity Diamond/Copper Composites by HTHP Method
TANG Lihui, XIAO Changjiang, ZHOU Bin, LI Zhengxin*
School of Materials Science and Engineering,Henan University of Technology, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 8338KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 区别于以往金刚石/铜复合材料多种制备技术的综述,本文聚焦于高温高压法制备高导热金刚石/铜复合材料的研究现状。高温高压法通过提供高温和超高压条件,能有效解决材料致密性和金刚石石墨化问题。本文综述了高温高压法制备金刚石/铜复合材料在烧结工艺、原料粒径、金刚石体积分数、金刚石表面镀覆和合金元素添加等方面的关键研究内容。高温高压法与熔渗法工艺的结合可在一定程度上缓解金刚石与铜的界面结合问题,并为热量传递提供金刚石直连通道,极大提升了金刚石/铜复合材料的热导率。未来可在此基础上进行细致的研究,以促进该领域中高温高压法制备工艺的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤黎辉
肖长江
周彬
栗正新
关键词:  高温高压  金刚石/铜  复合材料  热导率  金刚石热通道    
Abstract: Different from the previous reviews on various preparation techniques for diamond/copper composites, this paper focuses on the current research status of high thermal conductivity diamond/copper composites in the direction of high temperature and high pressure (HTHP) met-hod preparation technology. The HTHP method, by providing high temperature and ultra-high pressure conditions, can effectively solve the mate-rial densification and diamond graphitization problems. This paper reviews the key research areas in the preparation of diamond/copper compo-sites by the HTHP method, including sintering process, raw material particle size, diamond volume fraction, diamond surface coating, and the addition of alloying elements. Furthermore, with the combination of the HTHP method and infiltration technology, the interface bonding problem between diamond and copper has been alleviated to a certain extent, providing a direct diamond channel for heat transfer, which significantly improves the thermal conductivity of diamond/copper composites. Future exploration can be carried out in more detailed studies based on this foundation to promote the development of HTHP preparation technology in this field.
Key words:  high temperature and high pressure    diamond/copper    composites    high thermal conductivity    diamond heat channel
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TB333  
基金资助: 工信部高质量发展专项(203ZS20230005);河南省重大科技专项(221100230100);2024年度河南省重点研发专项(241111230300)
通讯作者:  *栗正新(曾用名栗政新),河南工业大学材料科学与工程学院教授、硕士研究生导师。目前主要从事磨料磨具、超硬材料及制品和计算机在材料科学与工程中的应用研究。zhengxin_li@haut.edu.cn   
作者简介:  汤黎辉,河南工业大学材料科学与工程学院硕士研究生,在栗正新教授的指导下进行研究。目前主要研究领域为金刚石、CBN聚晶、超硬材料及其功能性材料。
引用本文:    
汤黎辉, 肖长江, 周彬, 栗正新. 高温高压法制备高导热金刚石/铜复合材料的研究现状[J]. 材料导报, 2025, 39(18): 24080072-6.
TANG Lihui, XIAO Changjiang, ZHOU Bin, LI Zhengxin. Review on the Preparation of High Thermal Conductivity Diamond/Copper Composites by HTHP Method. Materials Reports, 2025, 39(18): 24080072-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080072  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080072
1 Sang J Q, Yu A Y, Yang W L, et al. Journal of Alloys and Compounds, 2022, 891, 16177.
2 Hao J P, Zhang Y J, Li N, et al. Diamond Related Materials, 2023, 138, 110213.
3 Kang C, Leng X S, Rui Z, et al. Crystals, 2023, 13(6), 906.
4 Yu-Siang Jhong, Meng-Chun Hsieh, Su-Jien Lin, et al. Materials Letters, 2019, 254, 316.
5 Zhang H D, Zhang J J, Liu Y, et al. Scripta Materialia, 2018, 152, 84.
6 Deng J L, Zhang H D, Fan T X, et al. Materials Reports, 2016, 30(3), 19 (in Chinese).
邓佳丽, 张洪迪, 范同祥, 等. 材料导报, 2016, 30(3), 19.
7 Ma C, Liu Y F. China Science and Technology Papers Online, 2014(12), 11 (in Chinese).
马超, 刘艳峰. 中国科技论文在线, 2014(12), 11.
8 Li M J, Ma Y, Gao J et al. China Surface Engineering, 2022, 35(4), 140 (in Chinese).
李明君, 马永, 高洁, 等. 中国表面工程, 2022, 35(4), 140.
9 Dong Z, Shu Q Z, Dong G L. Diamond and Related Materials, 2021, 115, 108296.
10 Wu X, Wan D, Zhang W, et al. Composite Interfaces, 2020, 28(6), 1.
11 Kang A L, Kang H Y, Jiao Z K, et al. Diamond & Abrasives Engineering, 2022, 42(6), 668 (in Chinese).
康翱龙, 康惠元, 焦增凯, 等. 金刚石与磨料磨具工程, 2022, 42(6), 668.
12 Guo J, Meng Y Q, Sun J F, et al. Materials Reports, 2022, 36(15), 108 (in Chinese).
郭靖, 孟永强, 孙金峰, 等. 材料导报, 2022, 36(15), 108.
13 Zhang K. Preparation and properties of high thermal conductivity diamond/copper composites. Master's Thesis, Zhengzhou University, China, 2022 (in Chinese).
张凯. 高导热金刚石/铜复合材料的制备工艺与性能研究. 硕士学位论文, 郑州大学, 2022.
14 Li H B. Study on properties of diamond/Cu composites prepared by spark plasma sintering. Master's Thesis, Henan University of Technology, China, 2023 (in Chinese).
李灏博. 放电等离子烧结制备金刚石/铜复合材料及性能研究. 硕士学位论文, 河南工业大学, 2023.
15 Ma S W, Pan Y F, Wen P. et al. Superhard Material Engineering, 2023, 35(5), 1 (in Chinese).
马邵伟, 潘亚飞, 文平, 等. 超硬材料工程, 2023, 35(5), 1.
16 Liu N, Huang Y P, Liu H Y, et al. Powder Metallurgy Technology, 2014, 32(1), 59 (in Chinese).
刘楠, 黄愿平, 刘海彦, 等. 粉末冶金技术, 2014, 32(1), 59.
17 Wang L H. Interfacial structure and thermal conductivity of Cu/diamond composites. Master's Thesis, University of Science and Technology Beijing, China, 2019 (in Chinese).
王鲁华. 铜/金刚石复合材料的界面结构与导热性能. 硕士学位论文, 北京科技大学, 2019.
18 Qian J. Preparation and properties of diamond/W/copper composites. Master's Thesis, Hangzhou Dianzi University, China, 2023 (in Chinese).
钱俊. 金刚石/W/铜复合材料的制备及性能研究. 硕士学位论文, 杭州电子科技大学, 2023.
19 Pan Y P. Preparation and Properties of diamond/Cu composites fabricated with double-layer coated diamond particles. Master's Thesis, University of Science and Technology Beijing, China, 2019 (in Chinese).
潘彦鹏. 双镀层法制备金刚石/铜复合材料及其性能研究. 硕士学位论文, 北京科技大学, 2019.
20 Xu W, Wu Y H, Yan Y J, et al. Journal of Shanghai Polytechnic University, 2023, 40(2), 98 (in Chinese).
徐薇, 吴益华, 闫永杰, 等. 上海第二工业大学学报, 2023, 40(2), 98.
21 Jia S Q, Yang F. Journal of Materials Science, 2021, 56(3), 2241.
22 Zhu J R. Multiscale study on heat transfer properties of graphene-enhanced copper/diamond composites. Master's Thesis, Beijing General Research Institute for Nonferrous Metals, China, 2023 (in Chinese).
朱家瑞. 石墨烯强化铜/金刚石复合材料热传输性能的多尺度研究. 硕士学位论文, 北京有色金属研究总院, 2023.
23 Qin Y, Yi J, Zhu W B. Ningbo Institute of Materials Science and Technology Technology and Engineering, China Academy of Research, 2021 (in Chinese).
秦越, 易剑, 褚伍波. 中国研究院宁波材料科技技术与工程研究所, 2021.
24 Xia Y, Xie Y F, Song Y Q, et al. Diamond & Abrasives Engineering, 2010, 30(6), 44 (in Chinese).
夏扬, 谢元锋, 宋月清, 等. 金刚石与磨料磨具工程, 2010, 30(6), 44.
25 Zhao L, Song P X, Zhang Y J, et al. Diamond & Abrasives Engineering, 2018, 38(2), 15 (in Chinese).
赵龙, 宋平新, 张迎九, 等. 金刚石与磨料磨具工程, 2018, 38(2), 15.
26 Dong L, Dong G X, Liu Q X, et al. Transactions of Materials and Heat Treatment, 2015, 36(2), 13 (in Chinese).
董丽, 董桂霞, 刘秋香, 等. 材料热处理学报, 2015, 36(2), 13.
27 Liu Q X, Dong G X, Chen H, et al. Materials Reports, 2013, 27(24), 66 (in Chinese).
刘秋香, 董桂霞, 陈惠, 等. 材料导报, 2013, 27(24), 66.
28 Chen H, Li S J, Jia C C, et al. In:Conference Record of the 16th National Conference on Composite Materials. Hunan, China, 2010, pp. 5.
陈惠, 李尚劼, 贾成厂, 等. 第十六届全国复合材料学术会议. 湖南, 2010, pp. 5.
29 Hui M H, Yu K P, Bi N, et al. Journal of Functional Materials, 2018, 49(1), 1059 (in Chinese).
胡美华, 于昆鹏, 毕宁, 等. 功能材料, 2018, 49(1), 1059.
30 Chen H, Jia C, Li S, et al. International Journal of Minerals Metallurgy and Materials, 2012, 19(4), 364.
31 Zhang W K, Peng F, Guo Z T, et al. Chinese Journal of High Pressure Physics, 2012, 26(3), 306 (in Chinese).
张文凯, 彭放, 郭振堂, 等. 高压物理学报, 2012, 26(3), 306.
32 Ding B B, Fan G H, Zhou D T, et al. Diamond & Abrasives Engineering, 2013, 33(1), 6 (in Chinese).
丁彬彬, 范广涵, 周德涛, 等. 金刚石与磨料磨具工程, 2013, 33(1), 6.
33 Liu Q X. Investigation on preparation and properties of diamond-metal composites. Master's Thesis, Hebei United University, China, 2014 (in Chinese).
刘秋香. 金刚石-金属复合材料的制备及其性能研究. 硕士学位论文, 河北联合大学, 2014.
34 He J, Wang X, Zhang Y, et al. Composites Part B- Engineering, 2015, 68, 22.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[3] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[4] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[5] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[6] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[7] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[8] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[9] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[10] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[11] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[12] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[13] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[14] 曹茗凯, 刘崟, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义, 王文广. 高能球磨过程中CNT对纳米TiO2增强铝基复合材料粉末形貌及粒径的影响[J]. 材料导报, 2025, 39(18): 24070186-6.
[15] 夏正辉, 汪丹丹, 丁健翔, 张培根, 田无边, 王丽瑶, 李大平, 魏坤霞, 魏伟, 孙正明. MAX相增强金属基复合材料的研究进展[J]. 材料导报, 2025, 39(17): 24100130-17.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed