Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24070186-6    https://doi.org/10.11896/cldb.24070186
  金属与金属基复合材料 |
高能球磨过程中CNT对纳米TiO2增强铝基复合材料粉末形貌及粒径的影响
曹茗凯1,2, 刘崟2, 昝宇宁2, 王东2, 王全兆2, 肖伯律2, 马宗义2, 王文广1,2,*
1 辽宁石油化工大学机械工程学院,辽宁 抚顺 113001
2 中国科学院金属研究所,沈阳 110016
Effect of CNT on the Powder Morphology and Particle Size of Nano-TiO2 Reinforced Aluminum Matrix Composites During High-energy Ball Milling
CAO Mingkai1,2, LIU Yin2, ZAN Yuning2, WANG Dong2, WANG Quanzhao2, XIAO Bolyu2, MA Zongyi2, WANG Wenguang1,2,*
1 School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
下载:  全 文 ( PDF ) ( 39416KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用高能球磨,在球料比(15∶1)和转速(220 r/min)不变的前提下,通过改变球磨时间来制备4%TiO2/Al、(4%TiO2+1.5%CNT)/Al、(4%TiO2+3%CNT)/Al三种粉末(本工作中TiO2为质量分数,CNT为体积分数)。利用X射线衍射仪(XRD)、金相显微镜(OM)、扫描电子显微镜(SEM)以及激光粒度测试仪等分析测试手段,来观察球磨后三种粉末中增强相的分布情况以及三种粉末在形貌和粒径上的差异。结果表明,高能球磨可以使增强相在铝基体中均匀分散,纳米尺寸的CNT可促使铝粉硬化并抑制其冷焊过程,从而显著加快球磨进程,促使粉末细化。在相同的球磨时间(7~9 h)下,4%TiO2/Al粉末形貌呈现片状,(4%TiO2+1.5%CNT)/Al、(4%TiO2+3%CNT)/Al粉末形貌呈现颗粒状。可见,由纳米TiO2和CNT两种增强相混杂得到的铝基复合材料粉末形貌比单一加入纳米TiO2增强相的粉末圆整度更高、粒径也更小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹茗凯
刘崟
昝宇宁
王东
王全兆
肖伯律
马宗义
王文广
关键词:  高能球磨  铝基复合材料  粉末形貌  球磨时间    
Abstract: In this work, under consistent conditions of a ball-to-powder ratio (15∶1) and a constant rotational speed (220 r/min), composite powders of 4wt%TiO2/Al, (4wt%TiO2+1.5vol%CNT)/Al, and (4wt%TiO2+3vol%CNT)/Al were prepared via variations in milling duration. Subsequent to milling, analytical methods including X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and laser particle size analysis were employed to inspect the distribution of the reinforcements within the milled powders, as well as to discern morphological and particle size discrepancies among them. The experimental findings suggest that high-energy ball milling can effectively disperse CNT evenly throughout the aluminum matrix. CNT can augment the strengthening of aluminum powder and inhibit cold welding, resulting in a substantial acceleration of the ball milling process and advancement of powder refining. Moreover, when compared at equivalent milling durations, 4wt%TiO2/Al powder showed flake morphology during ball milling for 7—9 h, and (4wt%TiO2+1.5vol%CNT)/Al and (4wt%TiO2+3vol%CNT)/Al showed granular morphology during ball milling for 7—9 h, the composite powders incorporating a blend of nanoscale TiO2 and carbon CNT as reinforcements exhibited a more spherical morphology and smaller particle sizes, as opposed to the powder containing only TiO2.
Key words:  high energy ball milling    aluminum matrix composite    powder morphology    milling time
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TB331  
基金资助: 国家重点研发计划(2023YFB3710601);中国科学院金属研究所创新基金(2021-ZD02)
通讯作者:  *王文广,辽宁石油化工大学教授、硕士研究生导师。主要研究方向为陶瓷和碳材料增强金属基复合材料的微观结构分析,特别是从纳米尺度研究材料的微观结构与性能特征之间的内在联系,并从事金属材料和金属基复合材料的疲劳力学性能研究。wgwang@imr.ac.cn   
作者简介:  曹茗凯,现为辽宁石油化工大学机械工程学院硕士研究生,在王文广教授和王东研究员的指导下进行研究。目前主要研究领域为铝基复合材料。
引用本文:    
曹茗凯, 刘崟, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义, 王文广. 高能球磨过程中CNT对纳米TiO2增强铝基复合材料粉末形貌及粒径的影响[J]. 材料导报, 2025, 39(18): 24070186-6.
CAO Mingkai, LIU Yin, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolyu, MA Zongyi, WANG Wenguang. Effect of CNT on the Powder Morphology and Particle Size of Nano-TiO2 Reinforced Aluminum Matrix Composites During High-energy Ball Milling. Materials Reports, 2025, 39(18): 24070186-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070186  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24070186
1 Yang J, Cao F J, Tan J B. Foundry Equipment and Technology, 2017(5), 69(in Chinese).
杨佳, 曹风江, 谭建波. 铸造设备与工艺, 2017(5), 69.
2 Cao L, Chen B, Jia Z D, et al. Foundry Technology, 2023, 44(8), 685(in Chinese)
曹遴, 陈彪, 贾振东, 等. 铸造技术, 2023, 44(8), 685.
3 Dong H T, Li D H, Zhai Z J, et al. Qinghai Science and Technology, 2024, 31(1), 94(in Chinese).
董海涛, 李登辉, 翟振杰, 等. 青海科技, 2024, 31(1), 94.
4 Liu G, Zhang G J, Jiang F, et al. Nature Materials, 2013, 12, 344.
5 Pan L W, Tang J F, Lin W J, et al. Hot Working Technology, 2016, 45(22), 33(in Chinese).
潘利文, 唐景凡, 林维捐, 等. 热加工工艺, 2016, 45(22), 33.
6 Zuo C M, Du X M, Luan D C, et al. Hot Working Technology, 2019, 48(16), 84(in Chinese)
左城铭, 杜晓明, 栾道成, 等. 热加工工艺, 2019, 48(16), 84.
7 XU S J, Xiao B L, Liu Z Y, et al. Acta Metallurgica Sinica, 2012, 48(7), 881(in Chinese)
许世娇, 肖伯律, 刘振宇, 等. 金属学报, 2012, 48(7), 882.
8 Mobasherpour I, Tofigh A, Ebrahimi M. Materials Chemistry and Physics, 2013, 138(23), 535.
9 Pan W W, Lin X, Liu S H, Chen Q S. Material Sciences, 2018, 8(6), 643.
10 Zhou M M, Jiang Y, Xie Y H, et al. Acta Materiae Compositae Sinica, 2022, 39(5), 2089(in Chinese).
周毛毛, 蒋阳, 谢于辉, 等. 复合材料学报, 2022, 39(5), 2089.
11 Hadi M J, Adel G A, Jasim A M, et al. Nanocomposites, 2020, 6(2), 47.
12 Karpets M, Milman Y, Barabash O, et al. Intermetallics, 2003, 11 (3), 241.
13 Zhu H, Jiang Y, Yao Y, et al. Materials Chemistry and Physics, 2013, 137(2), 532
14 Knowles A J, Jiang X, Galano M, et al. Journal of Alloys and Compounds, 2014(615), S401.
15 Benjamin J S. Metall Trans, 1970, A8, 29.
16 Bi S, Li Z S, Sun H X, et al. Acta Metallurgica Sinica, 2021, 57(1), 71(in chinese).
毕胜, 李泽琛, 孙海霞, 等. 金属学报, 2021, 57(1), 71.
17 Liu P, Wang A Q, Yan L P, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(4), 523(in Chinese).
柳培, 王爱琴, 兖利鹏, 等. 粉末冶金材料科学与工程, 2014, 19(4), 523.
18 Wang X F, Cai X L, Zhang D M, et al. Materials Reports, 2010, 24(11), 41.
王晓飞, 蔡晓兰, 张代明, 等. 材料导报, 2010, 24(11), 41.
19 Li Z, Cai X L, Yi F, et al, Hot Working Technology, 2014, 43(18), 114(in Chinese).
李铮, 蔡晓兰, 易峰, 等. 热加工工艺, 2014, 43(18), 114.
20 Liu Z Y, Xiao B L, Wang W G, et al. Composites, 2017, 94A, 189.
21 He H, Ni H W, Li G Q, et al. The Chinese Journal of Process Engineering, 2006, 6(S1), 23(in Chinese).
何航, 倪红卫, 李光强, 等. 过程工程学报, 2006, 6(S1), 23.
22 Bi S, Xiao B L, Ji H Z, et al. Acta Metallurgica Sinica (English Letters), 2021, 34, 196.
23 Dai L Y, Chen Q L, Lin S F, et al. Materials Reports, 2009, 23(22), 59(in Chinese)
戴乐阳, 陈清林, 林少芬, 等. 材料导报, 2009, 23(22), 59.
24 Benjamin J S, Volin T E. Metall Trans, 1974, 5, 1029.
25 Shi Z, Ma F C, Tan Z Q, et al. Powder Metallurgy Technology, 2024, 42(1), 14(in Chinese)
施展, 马凤仓, 谭占秋, 等. 粉末冶金技术, 2024, 42(1), 14.
[1] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[2] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[3] 朱高凡, 杨新异, 曹海波, 黄群英. 球磨时间和退火温度对氧化物弥散强化合金粉末结构的影响[J]. 材料导报, 2023, 37(17): 22030177-6.
[4] 高士康, 赵洪运, 李高辉, 周利, 刘会杰, 张成聪. 铝基复合材料搅拌摩擦焊研究现状[J]. 材料导报, 2022, 36(24): 21040264-9.
[5] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[6] 唐卫岗, 胡岭, 黄世盛, 陈融, 郭冰, 沈杭燕. 高能球磨法制备微米银片的工艺研究[J]. 材料导报, 2021, 35(z2): 428-432.
[7] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[8] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
[9] 孙茗, 庄景巍, 邓海亮, 陈子洋, 斯松华, 张瑞敏. 高温抗蠕变铝合金及铝基复合材料研究进展[J]. 材料导报, 2021, 35(11): 11137-11144.
[10] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[11] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[12] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[13] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[14] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[15] 张雪飞, 白景元, 管仁国. 半固态搅拌参数对A356-10%B4Cp复合材料显微组织的影响[J]. 材料导报, 2020, 34(10): 10103-10107.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed