Effect of CNT on the Powder Morphology and Particle Size of Nano-TiO2 Reinforced Aluminum Matrix Composites During High-energy Ball Milling
CAO Mingkai1,2, LIU Yin2, ZAN Yuning2, WANG Dong2, WANG Quanzhao2, XIAO Bolyu2, MA Zongyi2, WANG Wenguang1,2,*
1 School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract: In this work, under consistent conditions of a ball-to-powder ratio (15∶1) and a constant rotational speed (220 r/min), composite powders of 4wt%TiO2/Al, (4wt%TiO2+1.5vol%CNT)/Al, and (4wt%TiO2+3vol%CNT)/Al were prepared via variations in milling duration. Subsequent to milling, analytical methods including X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and laser particle size analysis were employed to inspect the distribution of the reinforcements within the milled powders, as well as to discern morphological and particle size discrepancies among them. The experimental findings suggest that high-energy ball milling can effectively disperse CNT evenly throughout the aluminum matrix. CNT can augment the strengthening of aluminum powder and inhibit cold welding, resulting in a substantial acceleration of the ball milling process and advancement of powder refining. Moreover, when compared at equivalent milling durations, 4wt%TiO2/Al powder showed flake morphology during ball milling for 7—9 h, and (4wt%TiO2+1.5vol%CNT)/Al and (4wt%TiO2+3vol%CNT)/Al showed granular morphology during ball milling for 7—9 h, the composite powders incorporating a blend of nanoscale TiO2 and carbon CNT as reinforcements exhibited a more spherical morphology and smaller particle sizes, as opposed to the powder containing only TiO2.
曹茗凯, 刘崟, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义, 王文广. 高能球磨过程中CNT对纳米TiO2增强铝基复合材料粉末形貌及粒径的影响[J]. 材料导报, 2025, 39(18): 24070186-6.
CAO Mingkai, LIU Yin, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolyu, MA Zongyi, WANG Wenguang. Effect of CNT on the Powder Morphology and Particle Size of Nano-TiO2 Reinforced Aluminum Matrix Composites During High-energy Ball Milling. Materials Reports, 2025, 39(18): 24070186-6.
1 Yang J, Cao F J, Tan J B. Foundry Equipment and Technology, 2017(5), 69(in Chinese). 杨佳, 曹风江, 谭建波. 铸造设备与工艺, 2017(5), 69. 2 Cao L, Chen B, Jia Z D, et al. Foundry Technology, 2023, 44(8), 685(in Chinese) 曹遴, 陈彪, 贾振东, 等. 铸造技术, 2023, 44(8), 685. 3 Dong H T, Li D H, Zhai Z J, et al. Qinghai Science and Technology, 2024, 31(1), 94(in Chinese). 董海涛, 李登辉, 翟振杰, 等. 青海科技, 2024, 31(1), 94. 4 Liu G, Zhang G J, Jiang F, et al. Nature Materials, 2013, 12, 344. 5 Pan L W, Tang J F, Lin W J, et al. Hot Working Technology, 2016, 45(22), 33(in Chinese). 潘利文, 唐景凡, 林维捐, 等. 热加工工艺, 2016, 45(22), 33. 6 Zuo C M, Du X M, Luan D C, et al. Hot Working Technology, 2019, 48(16), 84(in Chinese) 左城铭, 杜晓明, 栾道成, 等. 热加工工艺, 2019, 48(16), 84. 7 XU S J, Xiao B L, Liu Z Y, et al. Acta Metallurgica Sinica, 2012, 48(7), 881(in Chinese) 许世娇, 肖伯律, 刘振宇, 等. 金属学报, 2012, 48(7), 882. 8 Mobasherpour I, Tofigh A, Ebrahimi M. Materials Chemistry and Physics, 2013, 138(23), 535. 9 Pan W W, Lin X, Liu S H, Chen Q S. Material Sciences, 2018, 8(6), 643. 10 Zhou M M, Jiang Y, Xie Y H, et al. Acta Materiae Compositae Sinica, 2022, 39(5), 2089(in Chinese). 周毛毛, 蒋阳, 谢于辉, 等. 复合材料学报, 2022, 39(5), 2089. 11 Hadi M J, Adel G A, Jasim A M, et al. Nanocomposites, 2020, 6(2), 47. 12 Karpets M, Milman Y, Barabash O, et al. Intermetallics, 2003, 11 (3), 241. 13 Zhu H, Jiang Y, Yao Y, et al. Materials Chemistry and Physics, 2013, 137(2), 532 14 Knowles A J, Jiang X, Galano M, et al. Journal of Alloys and Compounds, 2014(615), S401. 15 Benjamin J S. Metall Trans, 1970, A8, 29. 16 Bi S, Li Z S, Sun H X, et al. Acta Metallurgica Sinica, 2021, 57(1), 71(in chinese). 毕胜, 李泽琛, 孙海霞, 等. 金属学报, 2021, 57(1), 71. 17 Liu P, Wang A Q, Yan L P, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(4), 523(in Chinese). 柳培, 王爱琴, 兖利鹏, 等. 粉末冶金材料科学与工程, 2014, 19(4), 523. 18 Wang X F, Cai X L, Zhang D M, et al. Materials Reports, 2010, 24(11), 41. 王晓飞, 蔡晓兰, 张代明, 等. 材料导报, 2010, 24(11), 41. 19 Li Z, Cai X L, Yi F, et al, Hot Working Technology, 2014, 43(18), 114(in Chinese). 李铮, 蔡晓兰, 易峰, 等. 热加工工艺, 2014, 43(18), 114. 20 Liu Z Y, Xiao B L, Wang W G, et al. Composites, 2017, 94A, 189. 21 He H, Ni H W, Li G Q, et al. The Chinese Journal of Process Engineering, 2006, 6(S1), 23(in Chinese). 何航, 倪红卫, 李光强, 等. 过程工程学报, 2006, 6(S1), 23. 22 Bi S, Xiao B L, Ji H Z, et al. Acta Metallurgica Sinica (English Letters), 2021, 34, 196. 23 Dai L Y, Chen Q L, Lin S F, et al. Materials Reports, 2009, 23(22), 59(in Chinese) 戴乐阳, 陈清林, 林少芬, 等. 材料导报, 2009, 23(22), 59. 24 Benjamin J S, Volin T E. Metall Trans, 1974, 5, 1029. 25 Shi Z, Ma F C, Tan Z Q, et al. Powder Metallurgy Technology, 2024, 42(1), 14(in Chinese) 施展, 马凤仓, 谭占秋, 等. 粉末冶金技术, 2024, 42(1), 14.