Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24040008-5    https://doi.org/10.11896/cldb.24040008
  无机非金属及其复合材料 |
无机卤化物钙钛矿CsPbCl3纳米线的可控制备与光学性质
党婵娟1,2, 沈霞2,*, 张保龙3, 郭鹏飞2,*
1 山西大同大学物理与电子科学学院,山西 大同 037009
2 太原理工大学电子信息与光学工程学院,太原 030024
3 信阳师范大学物理与电子工程学院,河南 信阳 464000
Controllable Growth and Optical Properties of Inorganic Halide Perovskite CsPbCl3 Nanowires
DANG Chanjuan1,2, SHEN Xia2,*, ZHANG Baolong3, GUO Pengfei2,*
1 School of Physics and Electronic Science, Shanxi Datong University, Datong 037009, Shanxi, China
2 College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
3 School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, Henan, China
下载:  全 文 ( PDF ) ( 12932KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无机卤化物钙钛矿纳米材料由于具有优异的光电子性能,包括高量子效率、长的载流子扩散长度、可控调制的带隙等,近年来受到科学家的广泛关注。这些优异的半导体材料在钙钛矿太阳能电池、光探测器、发光二极管、纳米激光器、光波导、光传感器等光电子器件中发挥了重要的作用。本工作主要介绍了一种利用化学气相沉积可控制备无机卤化物钙钛矿CsPbCl3纳米线及纳米薄膜的方法。结构表征证实了得到的纳米薄膜材料表面平整,具有高结晶度,纳米线材料长度为几十微米,直径为100~200 nm。光学测试结果表明,该CsPbCl3薄膜材料发射波长为425 nm,并且与纳米线发射峰位置一致。二维光学映射(2D-PL mapping)图像和荧光光谱结果表明,纳米线具有优良的荧光发射性质,且沿着纳米线轴向发光均匀,具有良好的光波导效应。这一钙钛矿材料可为未来纳米光通信和全光传输器件设计提供基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
党婵娟
沈霞
张保龙
郭鹏飞
关键词:  化学气相沉积法  无机卤化物钙钛矿薄膜  钙钛矿纳米线  光波导  纳米光子学    
Abstract: Inorganic halide perovskite nanomaterials have attracted much attention in recent years due to their excellent photoelectronic properties, including high quantum efficiency, long carrier diffusion length, and controllable bandgaps. These excellent performances of semiconductor materials have played an important role in perovskite solar cells, photodetectors, light-emitting diodes, nano-lasers, optical waveguides, optical sensors and other optoelectronic devices. A chemical-vapor-deposition method for the preparation of inorganic halide perovskite CsPbCl3 nanowire and nanowire films was described in this work. Structure characterizations confirmed that the surface of the prepared nanofilms has smooth surfaces with high crystalline. The length and diameter of the nanowires were tens of microns and 100—200 nm, respectively. The optical investigations show that the emission wavelength of the CsPbCl3 thin film is 425 nm, which shows well agreement with the nanowires. The results of two-dimensional optical mapping and PL spectra show that the nanowires have excellent fluorescence emission properties with uniform emission along the axis of the wire, as well as excellent waveguide properties. This perovskite material provides a basic design strategy for future nano-optical communication and all-optical transmission devices.
Key words:  chemical-vapor-deposition    inorganic halide perovskite thin film    perovskite nanowires    optical waveguide    nanophotonics
发布日期:  2025-05-29
ZTFLH:  O472+.3  
基金资助: 国家自然科学基金(52373246);大同市应用基础研究计划项目 (2023060)
通讯作者:  *沈霞,博士,山西能源学院强基学院讲师,主要从事纳米材料与光子器件性能调控等方面的研究。shenxia2019@126.com
郭鹏飞,博士,太原理工大学副研究员,博士研究生导师,香江学者。主要从事纳米光子学器件、半导体功能器件构建与性能调控等方面的研究,在半导体微纳结构能带调制、纳米光子学、瞬态光学等方面积累了丰富的研究基础并取得了一系列重要研究成果。guopengfei2010@126.com   
作者简介:  党婵娟,硕士,山西大同大学物理与电子科学学院讲师,太原理工大学电子信息与光学工程学院访问学者。目前主要从事纳米光子学等方面的研究。
引用本文:    
党婵娟, 沈霞, 张保龙, 郭鹏飞. 无机卤化物钙钛矿CsPbCl3纳米线的可控制备与光学性质[J]. 材料导报, 2025, 39(11): 24040008-5.
DANG Chanjuan, SHEN Xia, ZHANG Baolong, GUO Pengfei. Controllable Growth and Optical Properties of Inorganic Halide Perovskite CsPbCl3 Nanowires. Materials Reports, 2025, 39(11): 24040008-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040008  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24040008
1 Ha S T, Su R, Xing J, et al. Chemical Science, 2017, 8, 2522.
2 Fu Y P, Wu T, Wang J, et al. Nano Letters, 2017, 17, 4405.
3 Xu J L, Li X Y, Xiong J B, et al. Advanced Materials, 2020, 32, 1806736.
4 Liu J X, Xie W G. Materials Research and Application, DOI:10.20038/j.cnki.mra.2024.000033(in Chinese).
刘俊雄, 谢伟广. 材料研究与应用, DOI:10.20038/j.cnki.mra.2024.000033.
5 Nie W, Tsai H, Asadpour R, et al. Science, 2015, 347, 522.
6 Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nano Letters, 2015, 15, 3692.
7 Fan J, Lyu Q H, Yang Q, et al. Chemistry, 2023, 86(6), 665 (in Chinese).
范杰, 吕启航, 杨茜, 等. 化学通报, 2023, 86(6), 665.
8 Guo P F, Hossain M K, Shen X, et al. Advanced Optical Materials, 2018, 6, 1700993.
9 Zhang Q, Su R, Liu X F, et al. Advanced Functional Materials, 2016, 26, 6238.
10 Han R Y. Preparation and properties of inorganic perovskite quantum dots. Master’s Thesis, Shanghai Institute of Technology, China, 2023 (in Chinese).
韩睿祎. 无机钙钛矿量子点材料制备与性能研究. 硕士学位论文, 上海应用技术大学, 2023.
11 Lu M, Zhang Y, Wang S, et al. Advanced Functional Materials, 2019, 29, 1902008.
12 Kong Q, Lee W, Lai M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8889.
13 Zhang Z, Shen L, Zhao Y, et al. Chemical Engineering Journal, 2020, 385, 123415.
14 Wang Y, Jia C, Fan Z, et al. Nano Letters, 2021, 21, 1454.
15 Shi E, Yuan B, Shiring S B, et al. Nature, 2020, 580, 614.
16 Fu Y, Zhu H, Stoumpos C C, et al. ACS Nano, 2016, 10, 7963.
17 Dou L, Lai M, Kley C S, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7216.
18 Pan D, Fu Y, Chen J, et al. Nano Letters, 2018, 18, 1807.
19 Guo P F, Liu D, Shen X, et al. Nano Energy, 2022, 92, 106778.
20 Fan J, Guo P F, Lv Q H, et al. ACS Applied Nano Materials, 2023, 6, 17881.
21 Guo P F, Shen X, Zhang B L, et al. Nanotechnology, 2018, 29, 185201.
[1] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[2] 王云鹏, 刘宇宁, 王同波, 张嘉凝, 莫永达, 娄花芬. 铜箔衬底对化学气相沉积法制备石墨烯的影响[J]. 材料导报, 2024, 38(13): 22110222-5.
[3] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[4] 张祎辰, 王肖剑, 张明锦, 冯晴亮. 二硫化铂的可控合成及应用研究进展[J]. 材料导报, 2022, 36(15): 21050167-12.
[5] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[6] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[7] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[8] 杜斌, 童朝阳, 穆晞惠, 刘志伟, 汪将, 刘帅, 丁志军. 基于复合光波导的生化传感器应用研究进展*[J]. 材料导报, 2017, 31(21): 32-36.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed