Please wait a minute...
材料导报  2017, Vol. 31 Issue (21): 32-36    https://doi.org/10.11896/j.issn.1005-023X.2017.021.005
  材料综述 |
基于复合光波导的生化传感器应用研究进展*
杜斌1, 童朝阳1, 穆晞惠1, 刘志伟1, 汪将1, 刘帅1, 丁志军2
1 国民核生化灾害防护国家重点实验室,北京 102205;
2 防化研究院,北京 102205
Application and Research Progress of Biochemical Sensors Based on Composite Optical Waveguide
DU Bin1, TONG Zhaoyang1, MU Xihui1, LIU Zhiwei1, WANG Jiang1, LIU Shuai1, DING Zhijun2
1 State Key Laboratory of NBC Protection for Civilian, Beijing 102205;
2 Research Institute of Chemical Defense, Beijing 102205
下载:  全 文 ( PDF ) ( 1464KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光波导在光电技术领域有广泛的应用,复合光波导结构是在平面光波导上涂覆高折射率薄膜而得到的。基于复合光波导的生化传感器具有非标记、可逆、响应速度快等优点,在环境污染监测领域有广阔的应用前景。介绍了复合光波导的结构和机理,综述了基于复合光波导的生化传感器应用研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜斌
童朝阳
穆晞惠
刘志伟
汪将
刘帅
丁志军
关键词:  复合光波导  光学  生化传感器  薄膜    
Abstract: Optical waveguide is widely used in the field of photoelectric technology, and the composite optical waveguide could be prepared by depositing thin film with high refractive index onto the surface of planer optical waveguide. Biochemical sensors based on composite optical waveguide has a series of features, such as label-free, reversible and fast response, which have a broad application prospect in the field of environmental pollution detection. In this paper, the structure and mechanism of composite optical waveguide, and the application and research progress of biochemical sensors based on composite optical waveguide are reviewed.
Key words:  composite optical waveguide    optical    biochemical sensor    thin film
出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TP212  
基金资助: 国家重点研发计划(2016YFF0103103);国家自然科学基金(21402237);国民核生化灾害防护国家重点实验室基础研究基金项目(SKLNBC2012-01)
通讯作者:  童朝阳,男,1972年生,博士,研究员,主要从事生物检测技术的研究 E-mail:billzytong@126.com   
作者简介:  杜斌:男,1987年生,博士研究生,主要从事侦检材料与技术的研究
引用本文:    
杜斌, 童朝阳, 穆晞惠, 刘志伟, 汪将, 刘帅, 丁志军. 基于复合光波导的生化传感器应用研究进展*[J]. 材料导报, 2017, 31(21): 32-36.
DU Bin, TONG Zhaoyang, MU Xihui, LIU Zhiwei, WANG Jiang, LIU Shuai, DING Zhijun. Application and Research Progress of Biochemical Sensors Based on Composite Optical Waveguide. Materials Reports, 2017, 31(21): 32-36.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.005  或          https://www.mater-rep.com/CN/Y2017/V31/I21/32
1 Bo S, Wang J, Zhao H, et al. LaF3∶Er,Yb doped sol-gel polymeric optical waveguide amplifiers[J]. Appl Phys B: Lasers Opt, 2008,91:79.
2 Mitani M, Yamashita K, Fukui T, et al. Polymer optical waveguide composed of europium-aluminum acrylate composite core for compact optical amplifier and laser[J].Proc SPIE, 2015,9365:93650Q.
3 Huang L, Tsang K, Pun E Y B, et al. Sm3+-doped polymer optical waveguide amplifiers[J]. Opt Commun, 2010,283:1363.
4 Voznesenskiy S S, Sergeev A A, Mironenko A Y, et al. Integrated-optical sensors based on chitosan waveguide films for relative humi-dity measurements[J]. Sens Actuators B, 2013,188:482.
5 Li Q, Jia Y, Dai L, et al. Controlled rod nanostructured assembly of diphenyalanine and their optical waveguide properties[J]. ACS Nano, 2015,9(3):2689.
6 Oh M C, Kim K J, Lee J H. Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration[J]. Appl Phys Lett, 2006,89:251104.
7 Zhang C, Zhao Y S, Yao J. Optical waveguides at micro/nanoscale based on functional small organic molecules[J]. Phys Chem Chem Phys, 2011,13:9060.
8 Nagamura T, Adachi T, Sasaki K, et al. Highly sensitive detection of transient absorption in dye-doped ultrathin polymer films by the TiO2/K+composite optical waveguide method upon pulsed laser excitation[J]. Talanta, 2005,65:1071.
9 Zhong N, Liao Q, Zhu X, et al. Temperature-independent polymer optical fiber evanescent wave sensor[J]. Sci Rep, 2015,5:11508.
10Zhou Wei, Zhang Wei, Wang Zan, et al. Progress on fiber-optic evanescent wave biosensor technique in food safety detection[J].J Food Saf Qual, 2014,5(12):3971(in Chinese).
周巍, 张巍, 王赞, 等. 光纤倏逝波生物传感器在食品安全检测中应用进展[J]. 食品安全质量检测学报, 2014,5(12):3971.
11Latifi H, Ziball M I, Hosseini S M, et al. Nonadiabatic tapered optical fiber for biosensor applications[J]. Photonic Sens, 2012,2(4):340.
12Adányi N, Majer-Baranyi K, Nagy A, et al. Optical waveguide lightmode spectroscopy immunosensor for detection of carp vitellogenin[J]. Sens Actuators B, 2013,176:932.
13Murphy C, Stack E, Krivelo S, et al. Detection of the cyanobacterial toxin, microcystin-LR, using a novel recombinant antibody-based optical-planar waveguide platform[J]. Biosens Bioelectron, 2015,67:708.
14Xu J, Suarez D, Gottfried D S. Detection of avian influenza virus using an interferometric biosensor[J]. Anal Bioanal Chem, 2007,389:1193.
15Majer-Baranyi K, Zalán Z, M?rtl M, et al. Optical waveguide lightmode spectroscopy technique-based immunosensor development for aflatoxin B1 determination in spice paprika samples[J]. Food Chem, 2016,211:972.
16Bradshaw J T, Mendes S B, Saavedra S S. Planar integrated optical waveguide spectroscopy[J]. Anal Chem,2005,77(1):28A.
17Shankaran D R, Gobi K V, Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest[J]. Sens Actuators B, 2007,121:158.
18Washburn A L, Gunn L C, Bailey R C. Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators[J]. Anal Chem, 2009,81(22):9499.
19Yang T, Zheng C, Zhao S, et al. Optimized design and fabrication of Mach-Zehnder interferometer sensor in polymer technology[J]. Fiber Integr Opt, 2013,32:153.
20Hiltunen M, Hiltunen J, Stenberg P, et al. Polymeric slot waveguide interferometer for sensor applications[J]. Opt Express, 2014,22(6):7229.
21Gonzalez-Guerrero A B, Maldonado J, Herranz S, et al. Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics[J]. Anal Methods, 2016,8: 8380.
22Mukundan H, Anderson A S, Grace W K, et al. Waveguide-based biosensors for pathogen detection[J]. Sensors, 2009,9:5783.
23Qi Z M, Liu R P, Lu D F. High-sensitivity biochemical analyzer based on composite-optical-waveguide polarimetric interferometer[J]. Chin J Lasers, 2011,38(1):0108001(in Chinese).
祁志美, 刘瑞鹏, 逯丹凤. 基于复合光波导偏振干涉技术的高灵敏度生化检测仪[J]. 中国激光, 2011,38(1):0108001.
24Adányi N, Majer-Baranyi K, Berki M, et al. Development of immunosensors based on optical waveguide lightmode spectroscopy (OWLS) technique for determining active substance in herbs[J]. Sens Actuators B, 2017,239:413.
25Muriano A, Thayil K N A, Salvador J P, et al. Two-photon fluorescent immunosensor for androgenic hormones using resonant gra-ting waveguide structures[J]. Sens Actuators B, 2012,174:394.
26Kozma P, Kehl F, Ehrentreich-F?rster E, et al. Integrated planar optical waveguide interferometer biosensors: A comparative review[J]. Biosens Bioelectron, 2014,58:287.
27Wang B L, Hu L L, Zhang L Y. Application of sol-gel technique to the preparation of the planar waveguide[J]. Piezoelectr Acoustoopt, 2008,30(5):594(in Chinese).
王宝玲, 胡丽丽, 张丽艳. 溶胶-凝胶法在平面光波导薄膜制备中的应用[J]. 压电与声光, 2008,30(5):594.
28Liu L H, Zhou X H, Xu W Q, et al. Highly sensitive detection of sulfadimidine in water and dairy products by means of an evanescent wave optical biosensor[J]. RSC Adv, 2014,4:60227.
29Qi Z M, Itoh K, Murabayashi M, et al. A composite optical waveguide-based polarimetric interferometer for chemical and biolo-gical sensing applications[J]. J Lightwave Technol, 2000,18(8):1106.
30Mamtimin G, Yimit A. NiO-In2O3 composite thin film/tin-diffused glass optical waveguide sensor and its gas sensitivity properties[J]. Chin Sci Bull, 2012,57(1):47(in Chinese).
姑丽各娜·买买提依明, 阿布力孜·伊米提. NiO-In2O3薄膜/锡掺杂玻璃光波导传感元件及其气敏性[J]. 科学通报, 2012,57(1):47.
31Mohemaiti M, Keram A, Nezamidin P, et al. Preparation of zinc oxide thin film/tin-diffused optical waveguide sensor and gas-sensing detection[J]. Acta Chim Sin, 2011,69(15):1840(in Chinese).
米日古力·莫合买提, 阿斯娅·克里木, 帕提曼·尼扎木丁, 等. 溶胶-凝胶法制备氧化锌薄膜/锡掺杂玻璃光波导及其气敏性研究[J]. 化学学报, 2011,69(15):1840.
32Qi Z M, Yimit A, Itoh K, et al. Composite optical waveguide composed of a tapered film of bromothymol blue evaporated onto a potassium ion-exchanged waveguide and its application as a guided wave absorption-based ammonia-gas sensor[J]. Opt Lett, 2001,26(9):629.
33Rahman E, Kerim A, Yasin P, et al. MB-stearic acid composite film optical waveguide sensor for the detection of HCl gas[J]. Chem J Chin Universities, 2012,33(10):2173(in Chinese).
艾拜拉·热合曼, 阿斯娅·克里木, 帕提曼·亚森, 等. MB-硬脂酸复合薄膜光波导传感器检测氯化氢气体[J]. 高等学校化学学报, 2012,33(10):2173.
34Qi Z M, Honma I, Zhou H. Chemical gas sensor application of open-pore mesoporous thin films based on integrated optical polarimetric interferometry[J]. Anal Chem, 2006,78:1034.
35Yimit A, Itoh K, Murabayashi M. Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor[J]. Sens Actuators B, 2003,188:239.
36Yimit A, Talip D, Tursun E, et al. The application of highly sensitive composite optical waveguide in the ozone detection[J]. Chin J Anal Chem, 2005,33(11):1663(in Chinese).
阿布力孜·伊米提, 迪丽努尔·塔力甫, 艾尔肯·吐尔逊, 等. 高灵敏复合光波导在检测臭氧的应用研究[J]. 分析化学, 2005,33(11):1663.
37Yimit A, Huang X, Xu Y, et al. Development of a composite optical waveguide sensor for Immunoglobulin G[J]. Chem Lett, 2003,32(1):86.
38Lu D F, Qi Z M. Characterization and chemical/biosensing application of a high-sensitivity integrated optical polarimetric interferometer[J]. Acta Phys Sin, 2012,61(11):114212(in Chinese).
禄丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究[J]. 物理学报, 2012,61(11):114212.
39Lu D F, Qi Z M, Liu R P. An interferometric biosensor composed of a prism-chamber assembly and a composite waveguide with a Ta2O5 nanometric layer[J]. Sens Actuators B, 2011,157:575.
40Kadir R, Yimit A, Ablat H, et al. Optical waveguide BTX gas sensor based on polyacrylate resin thin film[J]. Environ Sci Technol, 2009,43(13):5113.
41Abdurahman R, Yimit A, Ablat H, et al. Optical waveguide sensor of volatile organic compounds based on PTA thin film[J]. Anal Chim Act, 2010,658:63.
42Zhu M, Yimit A. The preparation and gas sensitive research of M-cresol purple-PVP composite film/K+ion-exchanged glass optical waveguide sensor[J].Chin J Sens Actuators, 2015,28(9):1292(in Chinese).
朱敏,阿布力孜·伊米提. 间甲酚紫-PVP复合薄膜/K+交换玻璃光波导元件的制备及其气敏研究[J]. 传感技术学报, 2015,28(9):1292.
43Turdi G, Nizamudin P, Yan Y, et al. Tetraphenylporphyrin film optical waveguide OWG sensor for detect volatile organic compounds gas[J].Chin J Sens Actuators, 2016,29(7):966(in Chinese).
姑力米热·吐尔地, 帕提曼·尼扎木丁, 燕音, 等.四苯基卟啉薄膜/K+-交换玻璃光波导传感器的研制及其气敏性研究[J]. 传感技术学报, 2016,29(7):966.
[1] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[2] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[3] 丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
[4] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[5] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[6] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[7] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[8] 谭海星, 林剑荣, 黄培源, 彭憬怡, 刘思, 陈建文, 徐华, 肖鹏. 柔性氧化物薄膜晶体管栅绝缘层的研究进展[J]. 材料导报, 2024, 38(23): 23050204-9.
[9] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[10] 赵波, 柳俊. 原子层/分子层沉积技术及其在半导体先进工艺中的应用[J]. 材料导报, 2024, 38(20): 23030081-12.
[11] 丁诗娟, 崔玲娜, 刘跃军. 拉伸成膜工艺诱导聚乳酸结晶行为的研究进展[J]. 材料导报, 2024, 38(18): 23030182-9.
[12] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[13] 张墅野, 邵建航, 何鹏. 银纳米线透明导电薄膜仿真研究现状[J]. 材料导报, 2024, 38(10): 22110190-10.
[14] 贺彤, 杨一俏, 孙伟. 铋系超导薄膜面内取向的X射线测量方法[J]. 材料导报, 2023, 37(S1): 22070253-5.
[15] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed