Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080060-9    https://doi.org/10.11896/cldb.24080060
  无机非金属及其复合材料 |
面向集成应用的二维半导体生长进展及展望
朱世同1,2,3, 吴隽1,2,*, 吴浪4, 邹彩旗4, 刘蕾3, 邹茜璐3, 王欣然3,4, 李涛涛4,*
1 武汉科技大学材料学部,武汉 430081
2 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
3 南京大学电子科学与工程学院,南京 210023
4 南京大学集成电路学院,江苏 苏州 215163
Progress and Prospects of 2D Semiconductor Growth for Integration Applications
ZHU Shitong1,2,3, WU Jun1,2,*, WU Lang4, ZOU Caiqi4, LIU Lei3, ZOU Xilu3, WANG Xinran3,4, LI Taotao4,*
1 Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
2 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
3 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
4 School of Integrated Circuits, Nanjing University, Suzhou 215163, Jiangsu, China
下载:  全 文 ( PDF ) ( 48696KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以过渡金属硫族化合物(TMDC)为代表的二维半导体材料拥有原子级的极限厚度、短沟道免疫效应,在场效应晶体管、光电器件、传感器、柔性电子等领域展示出巨大的应用潜力。大面积、高质量的二维半导体材料的可控制备是实现上述应用的基础。本文综述了近年来二维半导体材料制备的研究进展,主要探讨了二维半导体材料的大面积制备方法、单晶薄膜的外延生长策略和机理、缺陷的控制、材料的转移、低温生长策略和主流的生长设备。最后对二维半导体材料未来生长方向进行了展望,通过深入的梳理和分析,以期为二维半导体材料的制备和应用提供更全面的支持和指导,推动二维材料领域的进一步发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱世同
吴隽
吴浪
邹彩旗
刘蕾
邹茜璐
王欣然
李涛涛
关键词:  二维半导体材料  化学气相沉积  单晶  集成电路    
Abstract: Two-dimensional semiconductors represented by transition metal sulfur compounds (TMDC) have atomic-level limit thickness, immunity to short channel effect, show great potentials for applications including field effect transistors, optoelectronic devices, sensors, flexible electronics, etc. The controllable synthesis of large-area, high-quality two-dimensional semiconductor materials is the basis for the above applications. This review hereby summarizes the recent progress in the preparation of two-dimensional semiconductor materials. Among them, the main topic includes large-area synthesis methods of two-dimensional semiconductor materials, epitaxial growth of single-crystals, defect engineering, transfer, low-temperature synthesis strategies and mainstream growth equipment. Finally, the growth of two-dimensional semiconductor materials is prospected. This review aims to provide more comprehensive support and guidance for the preparation and application of 2D semiconductor materials, and to promote the further development of the field of 2D materials.
Key words:  two-dimensional semiconductor material    chemical vapor deposition    single crystal    integrated circuit
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TB34  
  O782  
基金资助: 国家自然科学基金(62204113;62322408)
通讯作者:  *吴隽,博士,武汉科技大学材料学部教授。目前主要从事功能薄膜材料的制备与应用研究。woojun@wust.edu.cn;
李涛涛,博士,南京大学集成电路学院副教授。主要研究方向为晶圆级二维半导体单晶薄膜外延生长。ttli@nju.edu.cn   
作者简介:  朱世同,武汉科技大学材料学部硕士研究生,主要从事二维半导体材料制备与器件应用。
引用本文:    
朱世同, 吴隽, 吴浪, 邹彩旗, 刘蕾, 邹茜璐, 王欣然, 李涛涛. 面向集成应用的二维半导体生长进展及展望[J]. 材料导报, 2025, 39(18): 24080060-9.
ZHU Shitong, WU Jun, WU Lang, ZOU Caiqi, LIU Lei, ZOU Xilu, WANG Xinran, LI Taotao. Progress and Prospects of 2D Semiconductor Growth for Integration Applications. Materials Reports, 2025, 39(18): 24080060-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080060  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080060
1 Mack C A. IEEE Transactions on Semiconductor Manufacturing, 2011, 24, 202.
2 Lu Y C, Huang J K, Chao K Y, et al. Nature Nanotechnology, 2024, 19, 1066.
3 Chen R M. Nature Electronics, 2023, 6, 473.
4 Lin Y X, Cao Y, Ding S J, et al. Nature Electronics, 2023, 6, 506.
5 Peng L M. ACS Nano, 2023, 17, 22156.
6 Chhowall M, Jena D, Zhang H. Nature Reviews Materials, 2016, 1, 16052.
7 Xie L, Liao M Z, Wang S P, et al. Advanced Materials, 2017, 29, 1702522.
8 Li L, Deng Q R, Sun Y M, et al. Advanced Functional Materials, 2023, 33, 2304591.
9 Hu J Y, Zhou F, Wang J L, et al. Advanced Functional Materials, 2023, 33, 2303520.
10 Zhang T Y, Wang J T, Wu P, et al. Nature Reviews Materials, 2023, 8, 799.
11 Qiu H, Yu Z H, Zhao T G, et al. Science China Information Sciences, 2024, 67, 160400.
12 Zhou Z J, Hou F C, Huang X L, et al. Nature, 2023, 621, 499.
13 Li S S, Lin Y C, Liu X Y, et al. Nanoscale, 2019, 11, 16122.
14 Kang K, Xie S, Huang L, et al. Nature, 2015, 520, 656.
15 Zhu H Y, Nayir N, Choudhury T H, et al. Nature Nanotechnology, 2023, 18, 1295.
16 Cohen A, Mohapatra P K, Hettler S, et al. ACS Nano, 2023, 17, 5399.
17 Yu H, Huang L F, Zhou L Y, et al. Advanced Materials, 2024, 36, 2402855.
18 Yang P F, Zou X L, Zhang Z P, et al. Nature Communications, 2018, 9, 979.
19 Xia Y, Chen X Y, Wei J C, et al. Nature Materials, 2023, 22, 1324.
20 Xue G D, Sui X, Yin P, et al. Science Bulletin, 2023, 68, 1514.
21 Zhan Y J, Liu Z, Najmael S, et al. Small, 2012, 8, 966.
22 Kong D S, Wang H T, Cha J J, et al. Nano Letters, 13, 1341.
23 Wang X S, Feng H B, Wu Y M, et al. Journal of the American Chemical Society, 2013, 135, 5304.
24 Taheri P, Wang J Q, Xing H, et al. Materials Research Express, 2016, 3, 075009.
25 Pondick J V, Woods J M, Xing J, et al. ACS Applied Nano Materials, 2018, 1, 5655.
26 Cohen A, Patsha A, Mohapatra P K, et al. ACS Nano, 2020, 15, 526.
27 Yu H, Liao M Z, Zhao W J, et al. ACS Nano, 2017, 11, 12001.
28 Wang Q Q, Li N, Tang J, et al. Nano Letters, 2020, 20, 7193.
29 Xu X L, Pan Y, Liu S, et al. Science, 2021, 372, 195.
30 Li T T, Guo W, Ma L, et al. Nature Nanotechnology, 2021, 16, 1201.
31 Yang P F, Wang D S, Zhao X X, et al. Nature Communications, 2022, 13, 3238.
32 Wang J H, Xu X Z, Cheng T, et al. Nature Nanotechnology, 2022, 17, 33.
33 Fu J H, Min J C, Chang C K, et al. Nature Nanotechnology, 2023, 18, 1289.
34 Li L, Wang Q Q, Wu F F, et al. Nature Communications, 2024, 15, 1825.
35 Li T T, Yang Y, Zhou L Q, et al. National Science Open, 2023, 2, 20220055.
36 Chang Y M, Yang N, Min J C, et al. Advanced Functional Materials, 2024, 34, 2311387.
37 Wu T R, Zhang X F, Yuan Q H, et al. Nature Materials, 2016, 15, 43.
38 Ji Q Q, Su C, Mao N N, et al. Science Advances, 2021, 7, eabj3274.
39 Yang P F, Zhang S Q, Pan S Y, et al. ACS Nano, 2020, 14, 5036.
40 Li J, Wang S, Jiang Q, et al. Small, 2021, 17, 2100743.
41 Li X B, Dai X Y, Tang D Q, et al. Advanced Functional Materials, 2021, 31, 2102138.
42 Ding D G, Wang S, Xia Y P, et al. ACS Nano, 2022, 16, 17356.
43 Hu J Y, Quan W Z, Yang P F, et al. ACS Nano, 2022, 17, 312.
44 Dong J C, Zhang L N, Dai X Y, et al. Nature Communications, 2020, 11, 5862.
45 Yu Z H, Pan Y M, Shen Y T, et al. Nature Communications, 2014, 5, 5290.
46 Feng S M, Tan J Y, Zhao S L, et al. Small, 2020, 16, 2003357.
47 Zuo Y G, Liu C, Ding L P, et al. Nature Communications, 2022, 13, 1007.
48 Tang J, Wei Z, Wang Q Q, et al. Small, 2020, 16, e2004276.
49 Shen P C, Lin Y X, Su C, et al. Nature Electronics, 2022, 5, 28.
50 Wan Y, Li E, Yu Z H, et al. Nature Communications, 2022, 13, 4149.
51 Lin Y C, Jariwala B, Bersch B M, et al. ACS Nano, 2018, 12, 965.
52 Xu X M, Zhang C H, Hota M K, et al. Advanced Functional Materials, 2020, 30, 1908040.
53 Lu Z X, Sun L F, Xu G C, et al. ACS Nano, 2016, 10, 5237.
54 Fukamachi S, Solís-Fernández P, Kawahara K, et al. Nature Electronics, 2023, 6(2), 126.
55 Yuan G W, Liu W L, Huang X L, et al. Nature Communications, 2023, 14, 5457.
56 Wang Y, Zheng Y, Xu X F, et al. ACS Nano, 2011, 5, 9927.
57 Liu H J, Thi Q H, Man P, et al. Advanced Materials, 2023, 35, 2370102.
58 Meng W Q, Xu F F, Yu Z H, et al. Nature Nanotechnology, 2021, 16, 1231.
59 Kang K, Lee K H, Han Y, et al. Nature, 2017, 550, 229.
60 Wang W D, Clark N, Hamer M, et al. Nature Electronics, 2023, 6, 981.
61 Kwon J, Seol M, Yoo J, et al. Nature Electronics, 2024, 7, 356.
62 Bae S, Kim H, Lee Y, et al. Nature Nanotechnology, 2010, 5, 574.
63 Jang B, Kim C H, Choi S T, et al. 2D Materials, 2017, 4, 024002.
64 Juang Z Y, Wu C Y, Lu A Y, et al. Carbon, 2010, 48, 3169.
65 Zhu J D, Park J H, Vitale S A, et al. Nature Nanotechnology, 2023, 18, 456.
66 Hoang A T, Hu L, Kim B J, et al. Nature Nanotechnology, 2023, 18, 1439.
67 Qin B, Saeed M Z, Li Q Q, et al. Nature Communications, 2023, 14, 304.
68 Zhang K N, She Y H, Cai X B, et al. Nature Nanotechnology, 2023, 18, 448.
69 Zhang K N, Zhang T Y, You J W, et al. Small, 2024, 20, 2307587.
70 Ahn C, Lee J, Kim H U, et al. Advanced Materials, 2015, 27, 5223.
71 Seok H, Megra Y T, Kanade C K, et al. ACS Nano, 2021, 15, 707.
72 Park J H, Lu A Y, Shen P C, et al. Small Methods, 2021, 5, 2000720.
73 Macha M, Ji H G, Tripathi M, et al. Nanoscale Advances, 2022, 4, 4391.
[1] 盛红飞, 邓黎鹏, 易润华, 李海涛, 程东海, 黄斌. DD5合金钎焊前电阻焊定位界面成形及性能分析研究[J]. 材料导报, 2025, 39(9): 24030006-5.
[2] 李涛, 吕国强, 李遇贤, 钱益超, 张杰. 光伏单晶硅片冲洗过程中应力分布的研究[J]. 材料导报, 2025, 39(7): 24010045-7.
[3] 曲九灏, 雷宽, 马棋盛, 张艺馨, 刘贵群, 张小丽. DD90镍基单晶高温合金的电化学溶解行为研究[J]. 材料导报, 2025, 39(17): 24060120-7.
[4] 陈逸翀, 程跃, 王亚飞, 邵冲云, 于春雷, 胡丽丽. 单晶光纤的包层结构制备研究进展[J]. 材料导报, 2025, 39(11): 24060196-11.
[5] 党婵娟, 沈霞, 张保龙, 郭鹏飞. 无机卤化物钙钛矿CsPbCl3纳米线的可控制备与光学性质[J]. 材料导报, 2025, 39(11): 24040008-5.
[6] 王正省, 任永生, 马文会, 吕国强, 曾毅, 詹曙, 陈辉, 王哲. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 22100160-13.
[7] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[8] 周翔, 李太, 黄振玲, 赵亮, 康家铭, 李绍元, 任永生, 马文会, 吕国强. 大尺寸直拉法单晶硅生长过程中晶体缺陷的研究进展[J]. 材料导报, 2024, 38(24): 23100030-9.
[9] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[10] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[11] 王玉锋, 付前刚, 杨俊, 张华, 杨岩. 热障涂层对DD6单晶燃气热腐蚀及力学性能的影响[J]. 材料导报, 2024, 38(18): 23070037-6.
[12] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[13] 王云鹏, 刘宇宁, 王同波, 张嘉凝, 莫永达, 娄花芬. 铜箔衬底对化学气相沉积法制备石墨烯的影响[J]. 材料导报, 2024, 38(13): 22110222-5.
[14] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[15] 虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed