Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100013-12    https://doi.org/10.11896/cldb.24100013
  无机非金属及其复合材料 |
电弧等离子体制备过渡金属氮化物及应用
陈嘉乐1,2,3, 张达1,2,3,*, 解志鹏1,2,3, 刘轶昌1,2,3, 杨斌1,2,3, 梁风1,2,3,*
1 昆明理工大学真空冶金国家工程研究中心,昆明 650093
2 昆明理工大学云南省有色金属真空冶金重点实验室,昆明 650093
3 昆明理工大学冶金与能源工程学院,昆明 650093
Preparation of Transition Metal Nitrides by Arc Plasma and Their Applications
CHEN Jiale1,2,3, ZHANG Da1,2,3,*, XIE Zhipeng1,2,3, LIU Yichang1,2,3, YANG Bin1,2,3, LIANG Feng1,2,3,*
1 National Engineering Research Center for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
2 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
3 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 41059KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 过渡金属氮化物由于其独特的物理和化学性质,如高硬度、高熔点、优良的导电性和化学稳定性,广泛应用于催化、能源存储、电子器件和生物医学等领域。电弧等离子体技术作为一种高效、绿色的制备技术,因反应温度高、产物纯度高、反应活性高以及可控性强而在过渡金属氮化物制备领域备受关注。本文介绍了电弧等离子体并探讨了其制备工艺对产物的影响,总结了过渡金属氮化物在涂层、催化剂、磁性制冷剂和超导领域的应用现状,展望了电弧等离子体制备过渡金属氮化物的发展趋势。未来的研究应将先进的表征技术和模拟计算方法相结合,深入理解材料的生长机理并提高材料的纯度和一致性,降低能耗和生产成本,以实现等离子体对过渡金属氮化物微观结构和性能的精确调控。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈嘉乐
张达
解志鹏
刘轶昌
杨斌
梁风
关键词:  电弧等离子体  过渡金属氮化物  涂层  催化剂  磁性制冷剂  超导    
Abstract: Transition metal nitrides are widely used in catalysis, energy storage, electronic devices, and biomedicine due to their unique physical and chemical properties, such as high hardness, high melting points, excellent conductivity, and chemical stability. Arc plasma, an efficient and environmentally friendly preparation technology, has garnered significant attention in the field of transition metal nitride synthesis due to its high reaction temperature, excellent product purity, enhanced reactivity, and strong controllability. This paper introduces arc plasma and examines its impact on the preparation process, summarizing the current applications of transition metal nitrides in coatings, catalysis, magnetic refrigeration, and superconductivity. In the paper, the development trends of arc plasma in transition metal nitride synthesis are also discussed, highlighting the need for future research to integrate advanced characterization techniques with simulation and computational methods to gain a deeper understanding of material growth mechanisms. Future research should combine advanced characterization techniques and simulation calculation methods to deeply understand the growth mechanism of materials, improve the purity and consistency of materials, reduce energy consumption and production costs, and realize the precise control of plasma on the microstructure and properties of transition metal nitrides.
Key words:  arc plasma    transition metal nitride    coating    catalyst    magnetic refrigerant    superconductivity
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TB31  
基金资助: 国家自然科学基金(12175089;12205127);云南省重点研发计划项目(202103AF140006);云南省基础研究计划项目(202001AW070004;202301AS070051;202301AU070064);云南省“兴滇英才支持计划”产业创新人才(KKXY202252001);云南省外国人才引进专项(202305AO350042);云南省重大科技计划项目(202202AG050003)
通讯作者:  *张达,博士,昆明理工大学讲师,主要从事等离子体冶金、材料制备与改性等方面的研究。zhangda@kust.edu.cn
梁风,博士,昆明理工大学教授、博士研究生导师,日本九州大学客座教授。主要从事等离子体冶金及等离子体制备改性功能材料等方面的研究。liangfeng@kust.edu.cn   
作者简介:  陈嘉乐,昆明理工大学冶金与能源工程学院硕士研究生,在梁风教授的指导下进行研究。目前主要研究领域为直流电弧等离子体数值模拟。
引用本文:    
陈嘉乐, 张达, 解志鹏, 刘轶昌, 杨斌, 梁风. 电弧等离子体制备过渡金属氮化物及应用[J]. 材料导报, 2025, 39(21): 24100013-12.
CHEN Jiale, ZHANG Da, XIE Zhipeng, LIU Yichang, YANG Bin, LIANG Feng. Preparation of Transition Metal Nitrides by Arc Plasma and Their Applications. Materials Reports, 2025, 39(21): 24100013-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100013  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100013
1 Ningthoujam R S, Gajbhiye N S. Progress in Materials Science, 2015, 70, 50.
2 Wang H, Li J, Li K, et al. Chemical Society Reviews, 2021, 50, 1354.
3 Bi W T, Hu Z T, Li X G, et al. Nano Research, 2015, 8, 193.
4 Kim H H. Plasma Processes and Polymers, 2004, 1, 91.
5 Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing, Lieberman M A, Lichtenberg A J, ed. , Wiley-Interscience, Hoboken, N. J. , 2005, pp. 1.
6 Mahoney W, Andres R P. Materials Science and Engineering: A, 1995, 204, 160.
7 Kruis F E, Kusters K A, Pratsinis S E, et al. Aerosol Science and Technology, 1993, 19, 514.
8 Stein M, Egenolf Y, Dierks T, et al. International Journal of Psychophysiology, 2013, 89, 1.
9 Kiesler D, Bastuck T, Theissmann R, et al. Journal of Nanoparticle Research, 2015, 17, 152.
10 Saito G, Akiyama T. Journal of Nanomaterials, 2015, 2015, 123696.
11 Chen Q, Li J S, Li Y F. Journal of Physics D: Applied Physics, 2015, 48, 424005.
12 Guo Y M, Okazaki T. Japanese Journal of Applied Physics, 2004, 43, 720.
13 Shen L H, Cui Q L, Zhang J, et al. Chinese Physics Letters, 2005, 22, 3192.
14 Lei W W, Liu D, Shen L H, et al. Journal of Crystal Growth, 2007, 306, 413.
15 Lei W W, Liu D, Zhang J, et al. Journal of Alloys and Compounds, 2008, 459, 298.
16 Aithal S M, Subramaniam V V, Pagan J, et al. Journal of Applied Physics, 1998, 84, 3506.
17 Shinde K P, Jang S H, Kim J W, et al. Dalton Transactions, 2015, 44, 20386.
18 Yugeswaran S, Ananthapadmanabhan P V, Kumaresan L, et al. Ceramics International, 2018, 44, 14789.
19 Fu Q, Kokalj D, Stangier D, et al. Advanced Powder Technology, 2020, 31, 4119.
20 Chen J H, Lu G H, Zhu L Y, et al. Journal of Nanoparticle Research, 2007, 9, 203.
21 Thampi V V A, Bendavid A, Subramanian B. Ceramics International, 2016, 42, 9940.
22 Kumaresan L, Shanmugavelayutham G, Saravanan P. Applied Physics A, 2022, 128, 1073.
23 Kumaresan L, Selvakumar C, Shanmugavelayutham G, et al. New Journal of Chemistry, 2023, 47, 17080.
24 Cong R D, Liu X Y, Cui H, et al. CrystEngComm, 2014, 16, 3977.
25 Zhang D, Zhang K W, Xie Z P, et al. Materials, 2023, 16, 7469.
26 Shen L H, Wang N. Journal of Nanomaterials, 2011, 2011, 781935.
27 Park Y S, Kodama S, Sekiguchi H. Nanomaterials (Basel), 2021, 11, 2214.
28 Belmonte T, Kabbara H, Noël C, et al. Plasma Sources Science and Technology, 2018, 27, 074004.
29 Ma Y Z, Cui Q L, Shen L H, et al. Journal of Applied Physics, 2007, 102, 013525.
30 Barshilia H C, Surya P M, Poojari A, et al. Thin Solid Films, 2004, 460, 133.
31 Escobar C A, Caicedo J C, Aperador W. Journal of Physics and Chemistry of Solids, 2014, 75, 23.
32 Harrer S, Ahmed S, Afzali-Ardakani A, et al. Langmuir, 2010, 26, 19191.
33 Hazel B, Rigney J, Gorman M, et al. In: 11th International Symposium on Superalloys. Champion, PA, 2008, pp. 753.
34 Alling B, Högberg H, Armiento R, et al. Scientific Reports, 2015, 5, 9888.
35 Qiu Y, Zhang S, Lee J W, et al. Applied Surface Science, 2013, 279, 189.
36 Qiu Y, Zhang S, Lee J W, et al. Journal of Alloys and Compounds, 2015, 618, 132.
37 Qiu Y, Zhang S, Li B, et al. Surface and Coatings Technology, 2013, 231, 357.
38 Wang Y, Qian X D, Liew J R, et al. International Journal of Impact Engineering, 2014, 72, 1.
39 Wang Y X, Zhang S, Lee J W, et al. Surface and Coatings Technology, 2013, 231, 346.
40 Gao J, Zhao Y, Gu Z Q, et al. Ceramics International, 2017, 43, 8517.
41 Greer A L, Rutherford K L, Hutchings M. International Materials Reviews, 2002, 47, 87.
42 Kapsa P. Advanced Engineering Materials, 2001, 3, 531.
43 Rodríguez R J, García J A, Medrano A, et al. Vacuum, 2002, 67, 559.
44 Santecchia E, Hamouda A M S, Musharavati F, et al. Ceramics International, 2015, 41, 10349.
45 Polcar T, Parreira N M G, Cavaleiro A. Wear, 2008, 265, 319.
46 Castanho J, Cavaleiro A, Vieira M T. Vacuum, 1994, 45, 1051.
47 Cavaleiro A, Trindade B, Vieira M T. Surface and Coatings Technology, 2003, 174, 68.
48 Mishra S K, Kumar V, Tiwari S K, et al. Thin Solid Films, 2016, 619, 202.
49 Hołyńska M, Tighe A, Semprimoschnig C. Advanced Materials Interfaces, 2018, 5, 1701644.
50 Fu Y Q, Zhu X D, Tang B, et al. Wear, 1998, 217, 159.
51 Fu Y, Lam L N, Batchelor A W, et al. Materials Science and Enginee-ring: A, 1999, 265, 224.
52 Zerr A, Riedel R, Sekine T, et al. Advanced Materials, 2006, 18, 2933.
53 Tsetseris L, Kalfagiannis N, Logothetidis S, et al. Physical Review B, 2007, 76, 224107.
54 Bourguille J, Brinza O, Zerr A. Ceramics International, 2016, 42, 982.
55 Zerr A, Miehe G, Riedel R. Nature Materials, 2003, 2, 185.
56 Soldán J, Musil J, Zeman P. Plasma Processes and Polymers, 2007, 4, S6.
57 Kaul A B, Whiteley S R, Van Duzer T, et al. Applied Physics Letters, 2001, 78, 99.
58 Tsetseris L, Kalfagiannis N, Logothetidis S, et al. Physical Review Letters, 2007, 99, 125503.
59 Fu Y Q, Zhu X D, Tang B, et al. Materials Letters, 1999, 40, 192.
60 Lévy F, Hones P, Schmid P E, et al. Surface and Coatings Technology, 1999, 120, 284.
61 Navinsek B, Seal S. Journal of Metals, 2001, 53, 51.
62 Naik G V, Shalaev V M, Boltasseva A. Advanced Materials, 2013, 25, 3264.
63 Guler U, Shalaev V M, Boltasseva A. Materials Today, 2015, 18, 227.
64 Naik G V, Kim J, Boltasseva A. Optical Materials Express, 2011, 1, 1090.
65 Hu C Q, Liu J, Wang J B, et al. Light: Science & Applications, 2018, 7, 17175.
66 Li S, Xi C, Jin Y Z, et al. ACS Energy Letters, 2019, 4, 1823.
67 Lu X Y, Zhao C. Nature Communications, 2015, 6, 6616.
68 Ham D J, Lee J S. Energies, 2009, 2, 873.
69 Xu K, Chen P Z, Li X L, et al. Journal of the American Chemical Society, 2015, 137, 4119.
70 Jasinski R. Nature, 1964, 201, 1212.
71 Zheng Y Y, Zhang J, Zhan H T, et al. Electrochemistry Communications, 2018, 91, 31.
72 Pecharsky V K, Gschneidner Jr K A. Journal of Magnetism and Magnetic Materials, 1999, 200, 44.
73 Shen B G, Sun J R, Hu F X, et al. Advanced Materials, 2009, 21, 4545.
74 Phan M H, Yu S C. Journal of Magnetism and Magnetic Materials, 2007, 308, 325.
75 Warburg E. Annalen der Physik, 1881, 249, 141.
76 Gschneidner K A, Pecharsky V K, Tsokol A O. Reports on Progress in Physics, 2005, 68, 1479.
77 Gao R L, Fu C L, Cui L, et al. Physica B: Condensed Matter, 2015, 457, 36.
78 Yamamoto T A, Nakagawa T, Sako K, et al. Journal of Alloys and Compounds, 2004, 376, 17.
79 Nakano T, Masuyama S, Hirayama Y, et al. Applied Physics Letters, 2012, 101, 251908.
80 Nakagawa T, Sako K, Arakawa T, et al. Journal of Alloys and Compounds, 2006, 408, 187.
81 Banerjee B K. Physics Letters, 1964, 12, 16.
82 Chen X J, Struzhkin V V, Wu Z G, et al. Proceedings of the National Academy of Sciences, 2005, 102, 3198.
83 Deis D W, Gavaler J R, Hulm J K, et al. Journal of Applied Physics, 1969, 40, 2153.
84 Kasumov A Y, Deblock R, Kociak M, et al. Science, 1999, 284, 1508.
85 Zou Y T, Qi X T, Zhang C, et al. Scientific Reports, 2016, 6, 22330.
86 Gao D Q, Zhang J Y, Wang T T, et al. Journal of Materials Chemistry A, 2016, 4, 17363.
87 Kim D, Ahn J, Sinha B, et al. International Journal of Hydrogen Energy, 2015, 40, 11465.
88 Liao Z W, Yi X W, You J Y, et al. Physical Review B, 2023, 108, 014501.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 王健, 张永, 高津. 风电机组叶片涂层沙蚀效应的风洞试验研究[J]. 材料导报, 2025, 39(9): 23120009-5.
[3] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[4] 刘同旭, 王子君, 张新颖, 陈晓明, 朱广林, 郭策安. 电火花沉积工艺的研究现状和发展趋势[J]. 材料导报, 2025, 39(8): 24030203-9.
[5] 苏友义, 张明, 陶雯艳, 杨萍萍, 郭星辰, 邓徐, 谢佳乐. 硝酸盐催化还原合成氨研究进展[J]. 材料导报, 2025, 39(7): 24040024-12.
[6] 俞伟元, 景瑞, 董鹏飞, 吴保磊, 李扬, 强潇. 高速激光熔覆Fe基非晶涂层裂纹及组织分析[J]. 材料导报, 2025, 39(7): 24030107-6.
[7] 叶利亚, 陈宏飞, 杨光, 高彦峰. V2O5对β-(Ni,Pt)Al涂层热腐蚀抗性的影响[J]. 材料导报, 2025, 39(7): 24030041-4.
[8] 高峰, 郭策安, 张健. 身管内壁铬钽及其合金涂层研究进展[J]. 材料导报, 2025, 39(7): 24010200-8.
[9] 范锡宇, 赵珍, 马剑平, 周雪琴. 多层结构绿色植被高光谱伪装材料的设计与制备[J]. 材料导报, 2025, 39(7): 24030086-8.
[10] 唐晓龙, 温佳俊, 刘媛媛, 王成志, 罗宁, 段二红, 周远松, 易红宏, 高凤雨. CoMn2O4/Ce-TiO2双功能催化剂SCR脱硝协同CO氧化性能研究[J]. 材料导报, 2025, 39(5): 24020126-7.
[11] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[12] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[13] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[14] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[15] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed