Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 23120009-5    https://doi.org/10.11896/cldb.23120009
  金属与金属基复合材料 |
风电机组叶片涂层沙蚀效应的风洞试验研究
王健, 张永*, 高津
内蒙古农业大学机电工程学院,呼和浩特 010018
Wind Tunnel Experimental Study on the Sand Erosion Effect of Wind Turbine Blade Coatings
WANG Jian, ZHANG Yong*, GAO Jin
College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
下载:  全 文 ( PDF ) ( 24324KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 内蒙古的风电场主要分布于沙漠和高原地区,而位于沙尘暴多发地区的风电机组叶片表面涂层极易产生砂眼、裂纹和涂层剥落等沙蚀磨损。本工作利用风洞构建阿拉善高原的风沙环境,对旋转工况下的风轮进行了冲蚀试验。沿翼型方向:冲蚀特征数量由多到少依次为前缘、迎风面、后缘和背风面;随着风速的增大,整支叶片的冲蚀特征数量先大幅增加后增量很小。沿翼展方向:冲蚀特征的数量由少到多依次为叶根—0.3R段、0.3R—0.7R段、0.7R—叶尖段,0.7R—叶尖段的冲蚀特征数量几乎与其他两段的数量总和一样多。叶片涂层沙蚀最严重的区域是前缘的0.7R—叶尖段。沿叶根到叶尖的方向,从冲蚀形貌反映出,磨损越来越严重,沙蚀效应越来越明显。随着沙粒粒径由0~1 mm增大到1~2 mm,沙蚀效应也进一步加剧。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王健
张永
高津
关键词:  风电机组叶片涂层  风洞  形貌特征  沙蚀效应    
Abstract: Wind farms in Inner Mongolia are mainly distributed in deserts and plateaus. For wind turbines located in areas prone to sandstorms, the blade surface coatings are prone to sand erosion, such as sand holes, cracks, and coating peeling. In this work, the wind tunnel is utilized to construct the wind-sand environment of Alashan plateau, and the erosion test is carried out on the wind turbine under rotating working conditions. Along the airfoil direction: the number of erosion features from most to least is the leading edge, windward side, trailing edge, and leeward side;with the increase of wind speed, the number of erosion features of the entire blade first increases significantly and then increases very little. Along the spanwise direction: the number of erosion features from least to most is the blade root—0.3R section, 0.3R—0.7R section, 0.7R—blade tip section, and the number of erosion features in the 0.7R—blade tip section is almost the same as the sum of the numbers of the other two sections. The area with the most serious sand erosion of the blade coating is the 0.7R—blade tip section of the leading edge. Along the direction from the blade root to the blade tip, the erosion morphology reflects that the wear is getting more and more serious and the sand erosion effect is getting more and more obvious. As the sand particle size increases from 0—1 mm to 1—2 mm, the sand erosion effect is further aggravated.
Key words:  wind turbine blade coating    wind tunnel    morphology characteristics    sand erosion effect
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TH117.1  
基金资助: 内蒙古自治区自然科学基金(2023ZD12;2023MS05043);内蒙古自治区高等学校科学技术研究项目(NJZZ23031);内蒙古自治区“草原英才”工程现代农牧业工程新技术研发及应用创新人才团队(内组通字[2018]19号);内蒙古自治区高等学校创新团队(NMGIRT2312);内蒙古自治区“一流学科科研专项项目”(YLXKZX-NND-046)
通讯作者:  *张永,博士,内蒙古农业大学机电工程学院教授、博士研究生导师。目前主要从事数字化农牧业关键技术与装备和机电一体化技术方面的研究。yongz@imau.edu.cn   
作者简介:  王健,博士,内蒙古农业大学机电工程学院副教授、硕士研究生导师。目前主要从事风电机组叶片沙蚀磨损及损伤检测方面的研究。
引用本文:    
王健, 张永, 高津. 风电机组叶片涂层沙蚀效应的风洞试验研究[J]. 材料导报, 2025, 39(9): 23120009-5.
WANG Jian, ZHANG Yong, GAO Jin. Wind Tunnel Experimental Study on the Sand Erosion Effect of Wind Turbine Blade Coatings. Materials Reports, 2025, 39(9): 23120009-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120009  或          https://www.mater-rep.com/CN/Y2025/V39/I9/23120009
1 Zhou D D, Hu S R. Journal of Arid Land Resources and Environment, 2018, 32(5), 177(in Chinese).
周丹丹, 胡生荣. 干旱区资源与环境, 2018, 32(5), 177.
2 Ma X X, Wang H B, Zuo H J. Bulletin of Soil and Water Conservation, 2019, 39(4), 17(in Chinese).
马潇潇, 王海兵, 左合君. 水土保持通报, 2019, 39(4), 17.
3 Wang W J, Xue Y, He C K, et al. Energies, 2022, 15(15), 5672.
4 Aminzadeh A, Dimitrova M, Meiabadi M S, et al. Journal of Nondestructive Evaluation, 2023, 42, 54.
5 Duthé G, Abdallah I, Barber S, et al. Energies, 2021, 14(21), 7262.
6 Dai L P, Yao S G, Wang X D, et al. Acta Energiae Solaris Sinica, 2018, 39(1), 247(in Chinese).
戴丽萍, 姚世刚, 王晓东, 等. 太阳能学报, 2018, 39(1), 247.
7 Li D S, Wang C Z, Li Y R, et al. Acta Energiae Solaris Sinica, 2018, 39(3), 627(in Chinese).
李德顺, 王成泽, 李银然, 等. 太阳能学报, 2018, 39(3), 627.
8 Gao J, Zhang Y, Wang J, et al. Acta Energiae Solaris Sinica, 2020, 41(7), 367(in Chinese).
高津, 张永, 王健, 等. 太阳能学报, 2020, 41(7), 367.
9 Li D S, Chen X, Li Y R, et al. Journal of Gansu Sciences, 2020, 32(5), 63(in Chinese).
李德顺, 陈霞, 李银然, 等. 甘肃科学学报, 2020, 32(5), 63.
10 Zhang L X, Sheng W, Tang M L. Journal of Shenyang Institute of Engineering (Natural Science), 2021, 17(1), 5(in Chinese).
张丽新, 盛伟, 唐美玲. 沈阳工程学院学报(自然科学版), 2021, 17(1), 5.
11 Zhen Q, Chen S L, Wan D Q, et al. Acta Energiae Solaris Sinica, 2022, 43(7), 257(in Chinese).
甄琦, 陈松利, 万大千, 等. 太阳能学报, 2022, 43(7), 257.
12 Zhang Y, Huang C, Liu Z, et al. Materials Reports, 2016, 30(10), 95(in Chinese).
张永, 黄超, 刘召, 等. 材料导报, 2016, 30(10), 95.
13 Wang J, Du G Z, Zhang Y, et al. Materials Reports, 2021, 35(4), 4177(in Chinese).
王健, 杜国正, 张永, 等. 材料导报, 2021, 35(4), 4177.
14 Li D S, Liang E P, Li Y R, et al. Acta Energiae Solaris Sinica, 2022, 43(6), 196(in Chinese).
李德顺, 王成泽, 李银然, 等. 太阳能学报, 2022, 43(6), 196.
15 Sareen A, Sapre C A, Selig M S. Wind Energy, 2014, 17, 1531.
[1] 董舵, 肖逸, 邢佳颖, 原奇鑫. 煤衍生多孔碳改性调控及其在储能领域应用[J]. 材料导报, 2024, 38(24): 23110053-16.
[2] 阚国锦, 林朝光, 刘波, 周禹, 张晓晨. 多孔氮化硅气密涂层技术研究[J]. 材料导报, 2022, 36(13): 21010060-7.
[3] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed