Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100004-15    https://doi.org/10.11896/cldb.24100004
  金属与金属基复合材料 |
TiAl系合金和镍基高温合金连接技术研究进展
王银晨1, 常云峰1,2, 秦志伟1, 张亮亮1, 董红刚1, 程亚芳2, 郭鹏2, 李鹏1,*
1 大连理工大学材料科学与工程学院,辽宁 大连 116024
2 中国机械总院集团郑州机械研究所有限公司,郑州 450001
Research Progress on Heterogeneous Welding of Ni-based Superalloy and TiAl Based Alloy
WANG Yinchen1, CHANG Yunfeng1,2, QIN Zhiwei1, ZHANG Liangliang1, DONG Honggang1, CHENG Yafang2, GUO Peng2, LI Peng1,*
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
2 China Academy of Machinery Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 86020KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着高性能航空发动机制造用材料与连接技术的不断革新,镍基高温合金以其优异的高温性能获得广泛关注和应用。TiAl系合金作为新型轻质高温材料,在航空航天领域应用潜力巨大。为满足轻量化发展的迫切需求,实现其与镍基高温合金之间的良好连接势在必行。针对两者因物化性能差异而导致的焊接难题,本文综述了采用熔焊、钎焊、扩散焊及摩擦焊连接时异质金属接头的显微组织、力学性能和断裂机理。熔焊方法灵活、适应性强,但由于不均匀加热等问题接头易形成裂纹,劣化力学性能。钎焊是两类合金连接应用很广泛的焊接方法,目前钎料多以焊缝高熵的理念设计为多主元成分,常温剪切性能已接近母材强度。扩散焊的研究主要集中于中间层设计及工艺窗口建立等方面,其接头具有变形小和强度高等特点,适用于精密复杂结构的连接。采用摩擦焊方式时,焊后界面良好、没有明显裂纹等缺陷,但界面处产生的脆性相同样会恶化接头的力学性能。综上,为解决TiAl系合金和镍基高温合金的连接难题,抑制脆性相的形成和保证良好的冶金结合非常关键,这对于推动TiAl系合金和镍基高温合金的可靠应用意义重大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王银晨
常云峰
秦志伟
张亮亮
董红刚
程亚芳
郭鹏
李鹏
关键词:  TiAl系合金  镍基高温合金  微观组织  力学性能  异质金属焊接    
Abstract: With the continuous innovation of high-performance aero engine manufacturing materials and joining technology, Ni-based superalloys are widely concerned and successfully applied for their excellent high-temperature performance. TiAl based alloys have great potential for aerospace applications as new lightweight high-temperature materials. To fulfil the imperative demand of lightweight development, achieving a sound joining between TiAl based alloys and Ni-based superalloys is extremely necessary. In this paper, to overcome the welding difficulties caused by the differences in physical and chemical properties between these two metals, the microstructure, mechanical properties and fracture mechanisms of heterogeneous joints connected by different welding methods such as fusion welding, brazing, diffusion bonding and friction welding are reviewed. Among these welding methods, fusion welding is flexible and adaptable, but due to uneven heating and other problems, joints are vulne-rable to crack initiation, deteriorating mechanical properties. Brazing is an extensive welding method for two alloys, currently its filler metals are mainly designed as a multi-primary composition with the concept of high entropy, therefore the shear properties at room temperature have been close to the strength of the base metal. The research on diffusion bonding is mainly focused on the design of the interlayer and the establishment of the process window, etc. The joints are characterized by small welding deformation and high bonding strength, suitable for high joining precision and complex structures. Using the friction welding method, the welding interface is fine, without apparent cracks and other defects, howe-ver, the brittle phases generated at the interface will also deteriorate the mechanical properties. In summary, to solve the joining difficulties of TiAl based alloys and Ni-based superalloys, inhibiting the formation of brittle phases and ensuring sound metallurgical bonding is essential. Meanwhile, it is of great significance to promote the practical applications of the two alloys.
Key words:  TiAl based alloy    Ni-based superalloy    microstructure    mechanical property    dissimilar metal welding
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TG456  
基金资助: 国家重点研发计划(2023YFB3407500);国家自然科学基金(52075074;52375313);兴辽英才计划(XLYC2203097);中央高校基本科研业务费(DUT24ZD202)
通讯作者:  *李鹏,博士,大连理工大学材料科学与工程学院教授、博士研究生导师。主要从事先进材料高性能连接理论与技术、新型焊接材料成分设计、集成电路复杂结构精密成型等方面的研究。lipeng2016@dlut.edu.cn   
作者简介:  王银晨,大连理工大学材料科学与工程学院博士研究生。目前主要研究方向为钛/镍异质金属焊接中间层设计及强化机理。
引用本文:    
王银晨, 常云峰, 秦志伟, 张亮亮, 董红刚, 程亚芳, 郭鹏, 李鹏. TiAl系合金和镍基高温合金连接技术研究进展[J]. 材料导报, 2025, 39(21): 24100004-15.
WANG Yinchen, CHANG Yunfeng, QIN Zhiwei, ZHANG Liangliang, DONG Honggang, CHENG Yafang, GUO Peng, LI Peng. Research Progress on Heterogeneous Welding of Ni-based Superalloy and TiAl Based Alloy. Materials Reports, 2025, 39(21): 24100004-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100004  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100004
1 Long X, Chong K N, Su Y T, et al. International Journal of Fatigue, 2023, 175, 107778.
2 Yang X W, Meng T X, Chu Q, et al. Metallurgy and Materials, 2024, 31(6), 1382.
3 Li K S, Wang R Z, Zhang X C, et al. International Journal of Plasticity, 2023, 165, 103601.
4 Li L H, Sun E, Tin S. Materials Science and Engineering A, 2021, 814, 141146.
5 David S A, Siefert J A, DuPont J N, et al. Science and Technology of Welding and Joining, 2015, 20, 532.
6 Jiang Y J, Chun C Z, Shi L. Modern Welding, 2010(7), 1(in Chinese).
李亚江, 夏春智, 石磊. 现代焊接, 2010(7), 1.
7 Li B Y, Zhang K F, Yao W, et al. Materials Characterization, 2019, 150, 38.
8 Liu Z D, Yang J R, Chen R R, et al. Transactions of Nonferrous Metals Society of China, 2023, 33(12), 4039(in Chinese).
刘泽栋, 杨劼人, 陈瑞润, 等. 中国有色金属学报, 2023, 33(12), 4039.
9 Liu S S, Cao J X, Zhou Y, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(11), 3106(in Chinese).
刘石双, 曹京霞, 周毅, 等. 中国有色金属学报, 2021, 31(11), 3106.
10 Du S G, Wang S L, Ding K, Journal of Manufacturing Processes, 2020, 56, 688.
11 Li P, Zhang Z Y, Zhang L L, et al. Transactions of the China Welding Institution, 2024, 45(8), 1(in Chinese).
李鹏, 张振阳, 张亮亮, 等. 焊接学报, 2024, 45(8), 1.
12 Zhang L L, Dong H G, Li P, et al, Journal of Materials Science & Technology, 2024, 172, 51.
13 Zhang L L, Li P, Li S, et al. Composites Part B. 2024, 274, 111288.
14 Chen B Q, Xiong H P, Guo S Q, et al. Journal of Materials Engineering, 2014(4), 13(in Chinese).
陈冰清, 熊华平, 郭绍庆, 等. 材料工程, 2014(4), 13.
15 Chen B Q, Xiong H P, Sun B B, et al. Journal Materials Science Technology, 2014, 30, 715.
16 Chen B Q. Xiong H P, Guo S Q, et al. Metallurgical and materials transactions. A, Physical Metallurgy and Materials Science, 2015, 46(2), 756.
17 Chen B Q, Xiong H P, Sun B B, et al. Progress in Natural Science:Materials International, 2014, 24, 313.
18 Chen B Q, Xiong H P, Sun B B, et al. Materials and Design, 2015, 87, 732.
19 Hong K, Shin Y C. Journal of Materials Processing Technology, 2017, 245, 46.
20 Ren G Z, Zhang Y, Zhou J P, et al. Journal of Materials Research and Technology, 2023, 27, 6367.
21 Cai X L, Li H M, Wan L B, et al. Optics & Laser Technology, 2023, 157, 108736.
22 Xiao Z Y. TiAl based alloy and nickel-based superalloy. Master’s Thesis, Jilin University, China, 2021(in Chinese).
肖泽宇. TiAl基合金与镍基高温合金激光焊研究与数值模拟, 硕士学位论文, 吉林大学, 2021.
23 Cai X L, Sun D Q, Li H M, et al. Optics & Laser Technology, 2019, 111, 205.
24 Oliveira J P, Panton B, Zeng Z, et al. Acta Materialia, 2016, 105, 9.
25 Zhou X W, Chen Y H, Huang Y D, et al. Journal of Alloys and Compounds, 2018, 735, 2616.
26 Long W M, Zhang Q K, Zhu K, et al. Welding, 2014(1), 3(in Chinese).
龙伟民, 张青科, 朱坤, 等. 焊接, 2014(1), 3.
27 Long W M, Li S N, Dong D, et al. Rare Metal Materials and Engineering, 2019, 48(12), 3781(in Chinese).
龙伟民, 李胜男, 都东, 等. 稀有金属材料与工程, 2019, 48(12), 3781.
28 Jiang C Y, Li X Q, Wan B, et al. Intermetallics, 2022, 142, 107468.
29 Zhang T T, Yang X S, Miao K S, et al. Materials Science and Enginee-ring, A. 2018, 713, 28.
30 Dong D, Shi K Q, Zhu D D, et al. Intermetallics, 2021, 139, 107351.
31 Dong K W, Kong J, Yang Y, et al. Journal of Manufacturing Processes, 2019, 47, 410.
32 Xia Y Q, Ma Z, Du Q, et al. Materials Characterization, 2024, 207, 113520.
33 Kokabi D, Kaflou A. Welding in the World, 2021, 65(6), 1189.
34 Dong K W, Kong J, Peng Y, et al. Journal of Materials Processing Technology, 2020, 283, 116724.
35 Wan B, Li X. Journal of Physics: Conference Series, 2020, 1676(1), 012035.
36 Li X Q, Lou L, Qu S G, et al. Transactions of the China welding Institution, 2019, 40(10), 80(in Chinese).
李小强, 娄立, 屈盛官, 等. 焊接学报, 2019, 40(10), 80.
37 Li L, Zhao W, Feng Z X, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(8), 2143.
38 Xu P, Kang H, Qu P. Journal of the Chinese Society of Rare Earths, 2007, 25(2), 253(in Chinese).
许鹏, 康慧, 曲平. 中国稀土学报, 2007, 25(2), 253.
39 Zhang L L, Dong H G, Li P, et al, Journal of Materials Science & Technology, 2023, 154, 217.
40 Zhang L L, Li P, Dong H G, et al. Journal of Materials Science & Technology, 2025, 218, 287.
41 Hu S P, Li W Q, Fu W, et al. Chinese Journal of Aeronautics, 2021, 42(3), 423(in Chinese).
胡胜鹏, 李文强, 付伟, 等. 航空学报, 2021, 42(3), 423.
42 Chen Y. Research on Nb barrier brazing process and joint properties of Ti2AlNb and GH536 alloys. Master’s Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
陈岩. Ti2AlNb与GH536合金的Nb阻隔钎焊工艺及接头性能研究. 硕士学位论文, 哈尔滨工业大学, 2019.
43 Kokabi D, Kaflou A, Gholamipour R, et al. Journal of Materials Science, 2022, 57(8), 5275.
44 Ren H S, Ren X Y, Long W M, et al. Progress in Natural Science, Materials International, 2021(2), 310.
45 Ren H S, Xiong H P, Ye L, et al. Welding in the World, 2021(1), 65.
46 Li X Y. Design of NiZrSnCuHfFeCr high entropy filler and brazing mechanism for TiAl/GH3536. Master’s Thesis, Harbin Institute of Technology, China, 2022(in Chinese).
李昕悦. TiAl/GH3536的NiZrSnCuHfFeCr高熵钎料设计与连接机理研究. 硕士学位论文, 哈尔滨工业大学, 2022.
47 Seqeiros E, Guedes A, Pinto A, et al. Materials Science Forum, 2013, 730, 847.
48 Ren H S, Xiong H P, Long W M, et al. Journal of Materials Science & Technology, 2019, 35(9), 2070.
49 Long W M, Zhang G X, Zhang Q K, et al. Scripta Materialia, 2016, 110, 41.
50 Long W M, Zhang G X, Zhang Q K, et al. Transactions of the China Welding Institution, 2015, 36(11), 1(in Chinese).
龙伟民, 张冠星, 张青科, 等. 焊接学报, 2015, 36(11), 1.
51 Qian J W, Hou J B, Li J L, et al. Hot Working Technology, 2008(13), 90(in Chinese).
钱锦文, 侯金保, 李京龙, 等. 热加工工艺, 2008(13), 90.
52 Ren H S, Wu X, Chen B, et al. Welding in the World, 2017, 61(2), 375.
53 He P, Li H X, Lin T S, et al. Transactions of the China Welding Institution, 2012, 33(1), 17(in Chinese).
何鹏, 李海新, 林铁松, 等, 焊接学报, 2012, 33(1), 17.
54 Zhou Y, Xiong H P, Chen B, et al. Transactions of the China Welding Institution, 2012, 33(2), 17(in Chinese).
周媛, 熊华平, 陈波, 等. 焊接学报. 2012, 33(2), 17.
55 Qian J W, Li J L, Hou J B, et al. Journal of Aeronautical Materials, 2009, 29(1), 57(in Chinese).
钱锦文, 李京龙, 侯金保, 等. 航空材料学报, 2009, 29(1), 57.
56 Qian J W, Li J L, Xiong J T, et al. Rare Metal Materials and Engineering, 2011, 40(12), 2106(in Chinese).
钱锦文, 李京龙, 熊江涛, 等. 稀有金属材料与工程, 2011, 40(12), 2106.
57 Li H X, Lin T S, He P, et al. Transactions of the China Welding Institution, 2012, 33(11), 51(in Chinese).
李海新, 林铁松, 何鹏, 等. 焊接学报, 2012, 33(11), 51.
58 He P, Wang J, Lin T S, et al. International Journal of Hydrogen Energy, 2014, 39(4), 1882.
59 Wisbey A, Ward-Close C M. Materials Science and Technology, 1997, 13(4), 349.
60 Ren H S, Ren X Y, Xiong H P, et. al. Materials Characterization, 2019, 155, 109813.
61 Duan H P, Bohm K H, Ventzke V, et al. Transactions of Nonferrous Metals Society of China, 2005, 15(2), 375.
62 Beke D L, Erdélyi G, Materials Letters, 2016, 164, 111.
63 Chen J, Zhou X Y, Wang W L, et al. Journal of Alloys and Compounds, 2018, 760, 15.
64 Paul T R, Belova I V, Murch G E. Materials Chemistry and Physics, 2018, 210, 301.
65 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
66 Zhou Y, Xiong H P, Mao W, et al. Journal of Materials Engineering, 2012(8), 5(in Chinese).
周媛, 熊华平, 毛唯, 等. 材料工程, 2012(8), 5.
67 Li P, Wang Y C, Zhang L L, et al, Materials Science and Engineering, A, 2024, 902, 146558.
68 Wang Y C, Li P, Zhang L L, et al, Materials & Design, 2024, 244, 113094.
69 Ramos A S, Vieira M T, Simões S, et al. Advanced Materials Research, 2008, 59, 225.
70 Luo G X, Wu G X, Huang Z, et al. Scripta Materialia, 2007, 57(6), 521.
71 Wu G Q, Huang Z, Ruan Z J. Materials Characterization, 2004, 52(1), 81.
72 Bi X Y, Liu H, Li Y, et al. Composites Part B:Engineering, 2024, 218, 111500.
73 Bi X Y, Wang Z M, Xu M J, et al. Composites Part B:Engineering, 2022, 231, 109540.
74 Wang Z M. Bi X Y, Liu B S, et al. Composites Part B:Engineering, 2021, 216, 108797.
75 Dong K W, Kong J, Ruan X D, et al. Materials Science & Engineering, A, 2021, 815, 141255.
76 Li Z F, Wu G Q, Huang Z. Materials Letters, 2004, 58(27/28), 3470.
77 Gao Q, Zhang L Q, Liu J Y, et al. Intermetallics, 2022, 151, 107745.
78 He K, Gao Q, Zhang L Q. Intermetallics, 2024, 169, 108303.
79 Wang S L, Du S G, Li N, et al. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12), 1957(in Chinese).
王松林, 杜随更, 李娜, 等. 机械科学与技术, 2020, 39(12), 1957.
80 Du S G, Wang S L, Xu W T. Materials, 2020, 13(9), 2072.
81 Lee W B, Kim Y J, Jung S B. Intermetallics, 2004, 12, 671.
82 Zhang X, Effect of intermediate layer on microstructure and mechanical properties of friction stir welded joint of Ti/Al dissimilar metals. Master’s Thesis, Nanchang Hangkong University, China, 2016(in Chinese).
张鑫. 中间层材料对Ti/Al异种金属搅拌摩擦焊接头组织及性能的影响. 硕士学位论文, 南昌航空大学, 2016.
83 Ma J Y, Li J J. Materials Research and Application, 2023, 17(1), 79(in Chinese).
马俊雅, 李静静. 材料研究与应用, 2023, 17(1), 79.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 李丛, 赵雷, 徐连勇, 韩永典, 郝康达. 掺氢/纯氢环境下燃气轮机的氢致损伤研究进展[J]. 材料导报, 2025, 39(9): 24040126-10.
[6] 陈泰黎, 牛凡, 徐良辉, 陈新悦, 侯枭伟, 孙奖, 司艳, 方修洋, 蔡振兵. GH4169镍基高温合金的飞秒激光制孔性能研究[J]. 材料导报, 2025, 39(9): 24020029-7.
[7] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[8] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[9] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[10] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[11] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[12] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[13] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[14] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[15] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed