Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24090220-6    https://doi.org/10.11896/cldb.24090220
  金属与金属基复合材料 |
电脉冲处理对TC4钛合金组织及力学性能的影响
王帅1, 卿华2,*, 卢照1,*, 姚青荣1, 陈泽炜1, 王语菡1, 张雅3, 田伟庆1, 谈敦铭2, 赵叶曼2
1 桂林电子科技大学材料科学与工程学院,广西信息材料重点实验室,广西 桂林 541004
2 空军工程大学航空机务士官学校,河南 信阳 464001
3 郑州大学力学与安全工程学院,郑州 450000
Effect of Electropulsing Treatment on the Microstructure and Mechanical Properties of TC4 Titanium Alloy
WANG Shuai1, QING Hua2,*, LU Zhao1,*, YAO Qingrong1, CHEN Zewei1, WANG Yuhan1, ZHANG Ya3, TIAN Weiqing1, TAN Dunming2, ZHAO Yeman2
1 Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
2 Aviation Maintenance NCO Academy, Air Force Engineering University, Xinyang 464001, Henan, China
3 School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450000, China
下载:  全 文 ( PDF ) ( 27948KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用电脉冲处理(EPT)技术对TC4钛合金组织和力学性能进行调控。通过光学显微镜和扫描电子显微镜对不同电压、循环次数处理前后的试样进行微观组织表征,使用液压伺服材料试验机对试样的力学性能进行测试与分析。结果表明,电脉冲处理过程中,试样中心区域表面的最高温度与试样的最大电流密度之间存在近似线性关系。此外,电脉冲处理能显著改善TC4钛合金的微观组织,并提升其延伸率,降低再结晶温度和相变温度。随着电压的升高,TC4钛合金的抗拉强度基本保持不变,屈服强度有所下降,延伸率先增加后减小。其中400 V电压、50次循环的电脉冲处理下,延伸率提高了22.9%。本研究可为钛合金的性能改善提供一种新的工艺方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王帅
卿华
卢照
姚青荣
陈泽炜
王语菡
张雅
田伟庆
谈敦铭
赵叶曼
关键词:  电脉冲处理  TC4钛合金  微观组织  力学性能    
Abstract: In this work, the microstructure and mechanical properties of TC4 titanium alloy, with a particular focus on the effects of electropulsing treatment(EPT) technology, were investigated. The microstructure of the specimens were characterized by optical and scanning electron microscopy before and after treatment at different voltages and cycle times. The mechanical properties of the specimens were tested and analyzed using a hydraulic servo material testing machine. The results demonstrate that there is a linear relationship between the highest temperature and the maximum current density during the electropulsing treatment. Furthermore, the electropulsing treatment markedly enhances the microstructure of TC4 titanium alloy and effectively improves its elongation, while simultaneously reducing the recrystallization and phase transformation temperatures. The elongation exhibits an initial increase followed by a decline with rising voltage. The tensile strength remains largely unaltered, whereas the yield strength declines with increasing voltage. Among the specimens, the elongation increased by 22.9% under the EPT of 400 V and 50 cycles. This study provides a new optimization strategy for the processing and application of titanium alloys.
Key words:  electropulsing treatment    TC4 titanium alloy    microstructure    mechanical property
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TG146.2  
基金资助: 广西重点研发项目(桂科AB23075077;桂科AB23026114;桂科AB24010250;桂科AB24010168);国家自然科学基金(52061007)
通讯作者:  *卿华,硕士,空军工程大学航空机务士官学校飞机战伤抢修技术研究中心教授、硕士研究生导师。目前主要从事航空修理等方面的研究。qinghua529@163.com
卢照,博士,桂林电子科技大学研究员、硕士研究生导师。目前主要从事稀土功能材料、轻质金属结构材料等方面的研究。luzhao_gx@163.com   
作者简介:  王帅,桂林电子科技大学材料科学与工程学院硕士研究生,在卢照研究员、卿华教授的指导下进行研究。目前主要研究领域为轻质金属合金。
引用本文:    
王帅, 卿华, 卢照, 姚青荣, 陈泽炜, 王语菡, 张雅, 田伟庆, 谈敦铭, 赵叶曼. 电脉冲处理对TC4钛合金组织及力学性能的影响[J]. 材料导报, 2025, 39(21): 24090220-6.
WANG Shuai, QING Hua, LU Zhao, YAO Qingrong, CHEN Zewei, WANG Yuhan, ZHANG Ya, TIAN Weiqing, TAN Dunming, ZHAO Yeman. Effect of Electropulsing Treatment on the Microstructure and Mechanical Properties of TC4 Titanium Alloy. Materials Reports, 2025, 39(21): 24090220-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090220  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24090220
1 Wang L Q, Xie L C, Lv Y T, et al. Acta Materialia, 2017, 131, 499.
2 Zhang L C, Chen L Y. Advanced Engineering Materials, 2019, 21(4), 1801215.
3 Hafeez H, Liu S F, Lu E, et al. Journal of Alloys and Compounds, 2019, 790, 117.
4 Xing Y Z, Jiang C P, Hao J M. Vacuum, 2013, 95, 12.
5 Arrazola P J, Garay A, Iriarte L M, et al. Journal of Materials Processing Technology, 2009, 209 (5), 2223.
6 Guo J X, Yu D Q, Kan W B, et al. Materials Research and Application, 2023, 17(6), 1015(in Chinese).
郭金鑫, 于大千, 阚文斌, 等. 材料研究与应用, 2023, 17(6), 1015.
7 Wu C, Zhang S P, Guo H M, et al. Gas Turbine Experiment and Research, 2023, 36(4), 55(in Chinese).
吴晨, 张少平, 郭会明, 等. 燃气涡轮试验与研究, 2023, 36(4), 55.
8 Troitskii O, Likhtman V. Inst of Physics and Chemistry, 1963, 148, 332.
9 Zhu R F, Liu J N, Tang G Y, et al. Journal of Alloys and Compounds, 2012, 544, 203.
10 Chen K, Zhan L H, Yu W F. Journal of Materials Science & Technology, 2021, 95, 172.
11 Kim M, Lee S H, Yu J Y, et al. Journal of Materials Research and Technology, 2023, 26, 8500.
12 Ye X X. The effects of high-energy electropulsing on the preparation and properteis of biomedical titanium alloy. Ph. D. Thesis, Tsinghua University, China, 2015 (in Chinese).
叶肖鑫. 高能电脉冲对生物医用钛合金制备及性能影响的研究, 博士学位论文, 清华大学, 2015.
13 Song J L, Li M F, Tang P, et al. Heat Treatment of Metals, 2018, 43(4), 116(in Chinese).
宋进林, 黎明发, 汤朋, 等. 金属热处理, 2018, 43(4), 116.
14 Song J L, Li M F, Tang P, et al. Chinese Journal of Rare Metals, 2018, 42(7), 691 (in Chinese).
宋进林, 黎明发, 汤朋, 等. 稀有金属, 2018, 42(7), 691.
15 Pan D, Wang Y T, Guo Q T, et al. Materials Science and Engineering: A, 2021, 807, 140916.
16 Wang Y T, Zhao Y G, Xu X F, et al. Materials, 2019, 12 (9), 1383.
17 Xie L C, Liu C, Song Y L, et al. Journal of Materials Research and Technology, 2020, 9 (2), 2455.
18 Hu G L, Zhu Y H, Tang G Y, et al. Journal of Materials Science & Technology, 2011, 27 (11), 1034.
19 Ao D W, Chu X G, Yang Y, et al. Vacuum, 2018, 148, 230.
20 Song H, Wang Z J, Gao T J. Transactions of Nonferrous Metals Society of China, 2007, 17 (1), 87.
21 Yan X D, Xu X F, Zhou Y C, et al. Journal of Materials Science & Technology, 2024, 193, 37.
22 Wang X W, Xu J, Shan D B, et al. International Journal of Plasticity, 2016, 85, 230.
23 Wang X W, Xu J, Shan D B, et al. Materials & Design, 2017, 127, 134.
24 Jiang Y B, Tang G Y, Shek C H, et al. Acta Materialia, 2009, 57 (16), 4797.
25 Zhou Y C, Xu X F, Zhang Y, et al. Journal of Materials Science & Technology, 2023, 162, 109.
26 Dong X J. Research on plastic deformation characteristics and globularization behaviorof TA15 Titanium alloy with lamellar microstructure in alpha and beta phase field, Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2011 (in Chinese).
董显娟. 片状组织TA15钛合金α+β相区塑性变形特性及等轴化行为研究, 博士学位论文, 南京航空航天大学, 2011.
27 Ding F, Tang G Y, Xu Z H, et al. Journal of Materials Science & Technology, 2007, 23 (2), 273.
28 Peters M, Kumpfert J, Ward C H, et al. Advanced Engineering Materials, 2003, 5 (6), 419.
29 Gao L L, Liu J X, Cheng X W, et al. Materials Science and Enginee-ring: A, 2014, 618, 104.
30 Yan X D, Xu X F, W C, et al. Surface and Coatings Technology, 2023, 458, 129364.
31 Wang F, Qian D S, Hua L, et al. Scientific Reports, 2019, 9(1), 11315.
32 Zhong X Y. Effect of electropulsing treatment and aging on microstructure and properties of TC4 Titanium alloys in different initial states. Master’ s Thesis, Jilin University, China, 2018 (in Chinese).
种雪颖. 脉冲电流及时效处理对不同初始态TC4钛合金组织及性能的影响, 硕士学位论文, 吉林大学, 2020,
33 Golovin Y I, Finkel V M, Sletkov A. Strength of Materials, 1977, 9 (2), 204.
34 Dolinsky Y, Elperin T. Physical Review B, 1993, 47 (22), 14778.
35 Lu Y N, Long J H, Jiang Y B, et al. Heat Treatment of Metals, 2021, 46(10), 11 (in Chinese).
鲁岩娜, 龙佳慧, 姜雁斌, 等. 金属热处理, 2021, 46(10), 11.
36 Atkins P. Atkins’ physical chemistry, Oxford University Press, UK, 2006.
37 Yang X H. Effect of electropulsing and aging on the microstructure and properties of TC4 Titanium alloy, Master’s Thesis, Jilin University, China, 2018 (in Chinese).
杨雪慧. 脉冲电流处理及时效处理对TC4钛合金组织及性能的影响. 硕士学位论文, 吉林大学, 2018.
38 Chen J H, Xu W F, Zhang F J, et al. Rare Metal Materials and Engineering, 2021, 50 (6), 1883.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed