Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24090163-10    https://doi.org/10.11896/cldb.24090163
  高分子与聚合物基复合材料 |
网状材料阻燃聚合物的研究进展
潘也唐1,2,*, 李天宇1, 徐云蕾1, 苗伟佳1
1 北京理工大学材料学院,北京 100081
2 国家阻燃材料工程技术研究中心,北京 100095
Advances in Reticular Materials for Flame Retardant Polymers
PAN Yetang1,2,*, LI Tianyu1, XU Yunlei1, MIAO Weijia1
1 School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
2 National Engineering Research Center of Flame Retardant Materials, Beijing 100095, China
下载:  全 文 ( PDF ) ( 34539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 网状化学为新型复合材料的研发提供了新思路。近年来,许多科研人员对网状材料在各种高分子材料中的阻燃效果和机理进行了研究,利用网状材料比表面积大、孔隙率高、易于化学功能化、纳米结构可设计性好等特点,主要对金属有机框架材料(MOFs)、共价有机框架材料(COFs)、氢键有机框架材料(HOFs)的特性进行调整,用于各种聚合物中,设计出阻燃性能更强的聚合物复合材料。网状复合材料的设计是改善聚合物复合材料燃烧性能的新解决方案,非常有必要进行综合和系统的梳理。目前还没有关于网状材料在阻燃领域研究进展的综述,因此本文全面综述了MOFs、COFs和HOFs在阻燃高分子材料方面的最新研究进展,主要针对环氧树脂、聚氨酯及其他聚合物,分析了三种材料在对应聚合物材料中应用的改性策略和阻燃效果,最后对未来基于网状材料的聚合物复合阻燃剂研究面临的机遇和挑战进行简要的评论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘也唐
李天宇
徐云蕾
苗伟佳
关键词:  网状材料  阻燃  阻燃机理  高分子材料    
Abstract: The emergence of reticular materials has introduced innovative approaches in the development of new composite materials, particularly in enhancing fire-retardant properties. Recent studies have focused on the flame retardancy effects and mechanisms of reticular materials in va-rious polymer matrices. Leveraging the characteristics of these materials—including their high specific surface area, large porosity, ease of che-mical functionalization, and excellent design flexibility in nanostructures, researchers have adjusted the properties of metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs) for incorporation into diverse polymers, resulting in the design of composites with improved flame retardancy. The design of reticular composites represents a promising solution for enhancing the combustion performance of polymeric materials. Despite its importance, a comprehensive review on the progress of reticular materials in the field of flame retardancy is still lacking. Therefore, this paper provides a thorough review of the latest advancements in MOFs, COFs, and HOFs concerning flame-retardant polymer materials. It specifically examines modification strategies and flame-retardant effects for epoxy resins, polyurethanes, and other polymers. Finally, we offer a brief commentary on future research opportunities and challenges related to polymer composite flame retardants based on reticular materials.
Key words:  reticular material    flame retardancy    flame retardant mechanism    polymer composite
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TQ317.9  
基金资助: 国家级大学生创新创业训练计划(202410007038X);国家自然科学基金(22375023);重庆市自然科学基金(CSTB2024NSCQ-MSX0452);河北省自然科学基金(E2024105006);中央高校基本科研业务费专项资金(2024CX06053);北京理工大学大学生创新训练计划(BIT2023LH250)
通讯作者:  *潘也唐,博士,副教授、博士研究生导师。主要研究方向为功能高分子与阻燃材料。pyt@bit.edu.cn   
引用本文:    
潘也唐, 李天宇, 徐云蕾, 苗伟佳. 网状材料阻燃聚合物的研究进展[J]. 材料导报, 2025, 39(21): 24090163-10.
PAN Yetang, LI Tianyu, XU Yunlei, MIAO Weijia. Advances in Reticular Materials for Flame Retardant Polymers. Materials Reports, 2025, 39(21): 24090163-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090163  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24090163
1 Agrima Datta, Mamta Guleria, Keshav Kumar, et al. Applied Organometallic Chemistry, 2023, 37(6), e7083.
2 Chunlin Chen, Bin Wang, Guoqing Xiao, et al. Construction and Building Materials, 2023, 394, 132258.
3 Xilei Chen, Xihong Chen, Shaoxiang Li, et al. Polymers for Advanced Technologies, 2021, 32(8), 2829.
4 Xuye Du, Jian Lin, Dangsha Yang, et al. Polymer Materials Science & Engineering, 2023, 39(6), 64.
5 Christopher I I, Felicitas U I, Ifeanyi O, et al. Polymer-Plastics Technology and Materials, 2023, 63(2), 161.
6 Xiaolin Qi, Dongdong Zhou, Jing Zhang, et al. ACS Applied Materials & Interfaces, 2019, 11(22), 20325.
7 Xiaodong Jin, Xinyi Wu, Qinyong Liu, et al. Polymers for Advanced Technologies, 2023, 35(1), e6221.
8 Weihang Li, Zhiyong Lin, Haiyan Zuo, et al. Polymer Degradation and Stability, 2022, 198, 109877.
9 Aravind Dasari, Zhong-Zhen Yu, Gui-Peng Cai, et al. Progress in Polymer Science, 2013, 38(9), 1357.
10 Chuan Ma, Shogo Kumagai, Yuko Saito, et al. Environmental Science & Technology, 2024, 58(3), 1423.
11 Kunyu Guo, Qian Wu, Min Mao, et al. Composites Part B: Engineering, 2020, 193, 108017.
12 Kong Zimeng, Zhang Jian, Deng Yaxin, et al. China Plastics, 2024, 38(2), 105 (in Chinese).
孔子萌, 张简, 邓雅馨, 等. 中国塑料, 2024, 38(2), 105.
13 Xu Songjiang, Xu Zhiyan, Hou Zeming, et al. Materials Reports, 2023, 37(22), 22070044 (in Chinese).
许松江, 许志彦, 侯泽明, 等. 材料导报, 2023, 37(22), 22070044.
14 Xue Bi, Kunpeng Song, Yetang Pan, et al. Small, 2023, 20(12), 2307492.
15 Yanbei Hou, Weizhao Hu, Xia Zhou, et al. Industrial & Engineering Chemistry Research, 2017, 56(30), 8778.
16 Jan-Georg Rosenboom, Robert Langer, Giovanni Traverso. Nature Reviews Materials, 2022, 7(2), 117.
17 Niu Haoxin, Wang Xin, Song Lei, et al. Acta Polymerica Sinica, 2022, 53(8), 894 (in Chinese).
牛浩鑫, 王鑫, 宋磊, 等. 高分子学报, 2022, 53(8), 894.
18 Ritesh Kumar, Kambiz Sadeghi, Jaeyoung Jang, et al. Science of the Total Environment, 2023, 882, 163446.
19 Yuling Xiao, Chao Ma, Ziyu Jin, et al. Separation and Purification Technology, 2021, 259, 118119.
20 Lian Yin, Kaili Gong, Haifeng Pan, et al. Composites Part A:Applied Science and Manufacturing, 2022, 158, 106957.
21 Yaghi O M, Li G M, Li H L. Nature, 1995, 378(6558), 703.
22 Sun Zengzhi, Xue Cheng, Song Lifang, et al. Materials Reports, 2019, 33(3), 541 (in Chinese).
孙增智, 薛程, 宋莉芳, 等. 材料导报, 2019, 33(3), 541.
23 Kunpeng Song, Xue Bi, Chuang Yu, et al. ACS Applied Materials & Interfaces, 2024, 16(12), 15227.
24 Sanyuan Ding, Wei Wang. Chemical Society Reviews, 2013, 42(2), 548.
25 Ning Huang, Ping Wang, Donglin Jiang. Nature Reviews Materials, 2016, 1(10), 16068.
26 Bo Gui, Junjie Xin, Yuanpeng Cheng, et al. Journal of the American Chemical Society, 2023, 145(20), 11276.
27 Zhang Guanyin, Guan Qingqing, Miao Rongrong, et al. Materials Reports, 2021, 35(13), 13215 (in Chinese).
张关印, 关清卿, 庙荣荣, 等. 材料导报, 2021, 35(13), 13215.
28 Xiaowei Mu, Dong Wang, Ying Pan, et al. Composites Part B:Engineering, 2019, 164, 390.
29 Chung W T, Islam M A M, Mohamed G M, et al. Coordination Chemistry Reviews, 2023, 483, 215066.
30 Gao H X, Zhang Q H, Jean’ne M S. Journal of Materials Chemistry A, 2020, 8(8), 4193.
31 Xiyu Song, Yao Wang, Chen Wang, et al. Journal of the American Chemical Society, 2022, 144(24), 10663.
32 Yingbing Zou, Wenqi Cui, Denglong Chen, et al. ACS Applied Materials & Interfaces, 2023, 15(40), 47463.
33 Yanbei Hou, Weizhao Hu, Zhou Gui, et al. Composites Science and Technology, 2017, 152, 231.
34 Jing Zhang, Zhi Li, Xiaolin Qi, et al. Composites Part B:Engineering, 2020, 188, 107881.
35 Jing Zhang, Zhi Li, Lu Zhang, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(2), 994.
36 Zhengde Han, Wenyuan Zhang, Xiaoning Song, et al. Chemical Engineering Journal, 2023, 474, 145682.
37 Shui Yu, Chao Cheng, Keji Li, et al. Chemical Engineering Journal, 2023, 465, 143039.
38 Zhang Jing, Li Zhi, Shao Zhubao, et al. Chemical Engineering Journal, 2020, 400, 125942.
39 Yuling Xiao, Ziyu Jin, Lingxin He, et al. Composites Part B:Engineering, 2020, 182, 107616.
40 Xingwen Yang, Liang Zhao, Fei Peng, et al. Polymer Degradation and Stability, 2021, 193, 109721.
41 Yi Zheng, Yushi Lu, Keqing Zhou. Journal of Thermal Analysis and Ca-lorimetry, 2019, 138(2), 905.
42 Feng Zhang, Xiutao Li, Liqiang Yang, et al. Polymers for Advanced Technologies, 2021, 32(8), 3266.
43 Xiutao Li, Feng Zhang, Mengjie Zhang, et al. ACS Omega, 2021, 6(51), 35548.
44 Xiu Wang, Tong Wu, Jing Hong, et al. Chemical Engineering Journal, 2021, 421, 129697.
45 Rong Huang, Xiuyan Guo, Shiyue Ma, et al. Polymers, 2020, 12(1), 108.
46 Lu X, Lee A F, Gu X L. Materials Today Chemistry, 2022, 26, 101184.
47 Jia Wang, Yansong Liu, Xiuyan Guo, et al. ACS Omega, 2020, 5(50), 32286.
48 Zhida Zhang, Xueli Li, Yongshuai Yuan, et al. ACS Applied Materials & Interfaces, 2019, 11(43), 40951.
49 Boyou Hou, Kunpeng Song, Zeeshan Ur Rehman, et al. ACS Applied Materials & Interfaces, 2022, 14(12), 14805.
50 Yanqing Lai, Yongqing Gan, Zhian Zhang, et al. Electrochimica Acta, 2014, 146, 134.
51 Boyou Hou, Xiaoning Song, Kunpeng Song, et al. Journal of Colloid and Interface Science, 2024, 654, 235.
52 Xiaodie Zhang, Zhi Li, Hongfang Li, et al. Applied Surface Science, 2023, 615, 156316.
53 Ting Zhang, Guang Zhang, Long Chen. Accounts of Chemical Research, 2022, 55(6), 795.
54 Wu Weihong, Zhang Jing, Zhang Ge, et al. China Plastics, 2024, 38(8), 88 (in Chinese).
武伟红, 张竞, 张葛, 等. 中国塑料, 2024, 38(8), 88.
55 Yisi Yang, Libo Li, Ruibiao Lin, et al. Nature Chemistry, 2021, 13(10), 933.
56 Zhang Jiayan, Liu Bowen, Wang Yuzhong, et al. Acta Polymerica Sinica, 2022, 53(7), 842 (in Chinese).
张佳燕, 刘博文, 王玉忠, 等. 高分子学报, 2022, 53(7), 842.
57 Huawei Wang, Hu Qiao, Jia Guo, et al. Composites Part B:Engineering, 2020, 182, 107498.
58 Mei Wan, Congling Shi, Xiaodong Qian, et al. Composites Part A:Applied Science and Manufacturing, 2022, 163, 107187.
59 Congling Shi, Mei Wan, Zhengbo Hou, et al. Polymer Degradation and Stability, 2022, 204, 110119.
60 Mohaddeseh Afshari, Mohammad Dinari. Composites Part A-Applied Science and Manufacturing, 2021, 147, 106453.
61 Mohaddeseh Afshari, Mohammad Dinari. ACS Applied Materials & Interfaces, 2022, 14(43), 49003.
62 Yifan Zhou, Fukai Chu, Longlong Ding, et al. Chemosphere, 2022, 297, 134134.
63 Guangxu Bo, Xiaoling Xu, Xiaoke Tian, et al. Polymers, 2022, 14(17), 3630.
64 Yifan Zhou, Fukai Chu, Wenhao Yang, et al. Chemical Engineering Journal, 2022, 431, 134013.
65 Anying Zhang, Rui Wang, Yuping Wang, et al. Polymer Degradation and Stability, 2023, 216, 110457.
66 Reza Samiee, Shadi Montazeri, Bahram Ramezanzadeh, et al. Chemical Engineering Journal, 2022, 428, 132533.
67 Tianyi Ma, Wenqing Wang, Rui Wang. Polymers, 2023, 15(1), 224.
68 Ruiqing Shen, Tianhao Yan, Rong Ma, et al. Polymers, 2021, 13(23), 4113.
69 Ou Hongxiang, Ye Qing, Xu Jiacheng, et al. China Safety Science Journal(CSSJ), 2021, 31(1), 52 (in Chinese).
欧红香, 叶青, 徐家成, 等. 中国安全科学学报, 2021, 31(1), 52.
70 Yanbei Hou, Weizhao Hu, Zhou Gui, et al. Industrial & Engineering Chemistry Research, 2017, 56(8), 2036.
71 Yanbei Hou, Longxiang Liu, Shuilai Qiu, et al. ACS Applied Materials & Interfaces, 2018, 10(9), 8274.
72 Li Mengqi, Chen Yajun. China Plastics, 2022, 36(4), 102 (in Chinese).
李梦琪, 陈亚军. 中国塑料, 2022, 36(4), 102.
73 Yuling Xiao, Chao Ma, Ziyu Jin, et al. Chemical Engineering Journal, 2021, 421, 127837.
74 Bin Zou, Shuilai Qiu, Ziyan Qian, et al. Composites Part B-Engineering, 2022, 244, 110166.
[1] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[2] 李迎昕, 陈雅君, 钱立军. 含磷酰胺结构阻燃剂在高分子材料中的应用进展[J]. 材料导报, 2025, 39(5): 23120086-8.
[3] 崔晓晴, 王水莲, 王锐, 张洪艳. 二维导电纳米材料在聚合物燃烧预警及阻燃应用中的研究进展[J]. 材料导报, 2024, 38(17): 23040277-9.
[4] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[5] 许家杰, 钟金成, 陈麒, 杨鑫, 龚维. 微孔发泡材料成型装置及其可视化研究进展[J]. 材料导报, 2024, 38(10): 22100121-10.
[6] 赵明明, 王继辉, 倪爱清, 陈俊磊, 王昌增, 邬志超. 阻燃改性环氧树脂的抗紫外老化研究[J]. 材料导报, 2024, 38(1): 22080234-7.
[7] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[8] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[9] 郭鑫, 苏宏玺, 赵鸿, 欧阳成伟, 强小虎, 黄大建. 海泡石/原位生成氢氧化镁对琼脂基气凝胶的性能影响研究[J]. 材料导报, 2023, 37(5): 21090278-8.
[10] 耿亚茹, 杨国超, 徐冰冰, 张求慧. 利用静电吸附构建生物基核壳阻燃剂用于阻燃改性牛皮纸[J]. 材料导报, 2023, 37(5): 21070085-7.
[11] 王姗迟, 潘嵩玥, 孙俊玲, 赵燕. 热阻型氧化石墨烯基火灾早期预警传感器的研究进展[J]. 材料导报, 2023, 37(24): 22010297-9.
[12] 蒋平, 吕太勇, 吴丽华, José Pérez-Rigueiro, 胡梦蕾, 徐丽萍, 黄诗怡, 王安萍, 郭聪. 形变导致的蜘蛛大壶状腺丝力学行为的记忆与变异[J]. 材料导报, 2023, 37(23): 22050257-9.
[13] 许松江, 许志彦, 侯泽明, 宝冬梅, 周国永, 邹光龙. 环氧树脂/DOPS衍生物复合材料的阻燃性能及热降解行为[J]. 材料导报, 2023, 37(22): 22070044-7.
[14] 常郗文, 龙永双, 仪明伟, 王晨, 肖月. 道路沥青挥发性有机化合物减排材料的研究进展[J]. 材料导报, 2023, 37(20): 22040399-16.
[15] 陆海梅, 王超, 王洪坤, 张李佳琦, 黄勇, 吴敏. 全组分微纳化木质纤维素基聚磷酸铵阻燃剂的制备及在纸张中的应用[J]. 材料导报, 2023, 37(10): 22020161-1.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed